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Abstract

Cellular Automata are mathematical, discrete models for dynamic systems. They consist
of a large set of space-distributed objects that interact locally. It is known that the Major-
ity Problem can only be solved by Cellular Automata with some limitations. This thesis
presents Cellular Automata with a probabilistic extension and examins the performance
of these Automata when solving this problem. These so-called probabilistic Cellular Au-
tomata proved to perform better than the ordinary ones. However, another important
criteria to be considered is the running time. This criteria is also examined.

Zusammenfassung

Zelluläre Automaten sind mathematische, diskrete Modelle für dynamische Systeme.
Diese bestehen aus einer großn Menge an räumlich verteilten Objekten die local wechsel-
wirken. Es ist bekannt, dass das Mehrheitsproblem (Majority Problem) nur mit einigen
Einschränkungen von zellulären Automaten gelöst werden kann. Diese Arbeit zeigt zel-
luläre Automaten mit einer probabilistischen Erweiterung auf und untersucht die deren
Leistung beim Lösen des Mehrheitsproblems. Diese sogenannte probabilistische zelluläre
Automaten erwiesen sich als leistungsfähiger als gewöhnliche zelluläre Automaten. Den-
noch ist die Laufzeit ein weiterer wichtiger Maßstab, der betrachtet werden muss. Dieser
wird ebenfalls untersucht.
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1. Purpose of this Thesis

The task of programing massively parallel computing devices for solving problems has
turned out to be difficult. One well known type of massively parallel computing systems
are the so-called Cellular Automata. These are by definition very simple objects that can
show behaviours of very high complexity. In order to analyze their computational power
it is necessary to submit them to a well defined computational task. For Cellular Automata
this task is par excellence the Majority Problem.

This thesis will aim to examine the computational power of Probabilistic Cellular Au-
tomata using the example of the Majority Problem. The search for a solution to it has con-
cerned many theoretical computer scientists and mathematicians. Although it is known
that it cannot be perfectly solved by ordinary Cellular Automata, there have been many
attempts to get as close as possible to a perfect solution. This thesis will analyze a possible
solution using Cellular Automata with a probabilistic extension and examine the circum-
stances under which that solution is optimal. The nature of the topic dictates both the
discussion of theoretical considerations and the use of a simulating tool in order to sup-
port them. This tool will mainly cover the following features:

1. Given the set of parameters that define a Probabilistic Cellular Automaton, a concrete
problem specification and the maximum amount of time units, simulations of runs
will be visualized. The tool will be able to recognize if the problem was correctly
solved, if the computed solution was not correct or if the given maximum time units
did not suffice to finish the computation. In addition it will output the amount of
time steps needed for the run.

2. Providing the possibility to set any of the parameters as random values, the tool will
be able to iteratively execute the same run a specified number of times providing the
user with a statistic. This statistic will contain all the important information for the
user to evaluate the performance of the Cellular Automaton defined by the given set
of parameters. This information will regard the goodness and the average time units
of the run.

3. In order to analyze the influence of a specific parameter on the performance of a
Cellular Automaton, a last feature is required. This will allow the user to select one
specific parameter and run many statistics, each of them with a different value for
the chosen parameter, which will be increased gradually. The tool will finally display
a graph showing the performance of the Cellular Automaton against that parameter.

Simulations ran using this tool will demonstrate the effects of probability and will give
some evidence of what we can gain using Cellular Automata with a probabilistic exten-
sion.
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2. Introduction to Cellular Automata

A Cellular Automaton (CA) is a mathematical, discrete model for dynamic systems. De-
spite the simplicity of their construction CAs can exhibit very complex behaviors. This
property makes CAs very popular among researchers from different areas including not
only mathematicians and computer scientists, but also biologists, physicists, chemists,
physicians, cryptographers, geographers, etc.

CAs are computational models based on some homogeneous components which can
have one of a finite number of states. The state of each component changes through dis-
crete time steps according to a defined transition rule and to the state of the components
next to him. This is why, since their appearance in the 1950’s, CAs have mainly been used
to model systems which can be described as a large set of space-distributed objects inter-
acting locally, e.g. traffic flow, cells evolution, urban development, etc.

2.1. History of CA

CAs were introduced by John von Neumann in the late 1940’s while he was working on
the problem of self-replicating systems [21]. Von Neumann had the notion of a machine
constructing a replica of itself, but as he developed his design he realized that the costs of
building a self-replicating robot were too high. Following a 1951 suggestion of Stanislaw
Ulam (von Neumanns colleague at that time) he reduced his model to a more abstract,
mathematical model. This reduction ended up 1953 in the first CA: one in which the com-
ponents were ordered on a two-dimensional grid and each of them could have one of 29
different states and included an algorithmically implementation of his self-replicator. Von
Neumann then proved the existence of a particular pattern which would make endless
copies of itself within the given cellular universe. This design is known as the tessellation
model and is called an universal constructor [20].

Later, in the 1960’s, CAs began to be studied as one type of dynamical systems and in
1970 a CA named Game of Life started to become widely known through the magazine Sci-
entific American by Martin Gardner [15]. This CA was invented by John Horton Conway
and is one of the most known CAs today. Game of Life consists of a two-dimensional lat-
tice in which each cell is colored black if the cell is “alive” and white if it is “dead”. The
neighborhood is the so-called Moore-neighborhood: it consists of the 4 neighbors of von
Neumann’s defined neighborhood (left, right, top and bottom side neighbors) and the 4
diagonal neighbors [22]. The transition rule for each cell is the following: 1) A dead cell
becomes alive if it has exactly 3 living neighbors. 2) A living cell dies if it has less than 2
or more than 3 living neighbors (loneliness or overpopulation). 3) Otherwise a cell stays
the same. In this game it is possible to build a pattern that acts like a finite state machine
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2. Introduction to Cellular Automata

connected to two counters. The computational power of this machine is equivalent to the
one of an universal Turing machine. This is why Game of Life is Turing complete, which
means, that it is in theory as powerful as any computer with no memory limit and no time
constraints [3].

Since 1983 Stephen Wolfram has done a lot of research in the field of CAs. He observed
the evolution of one-dimensional CAs with 2 or 3 states and classified their behavior into
4 classes [25].

2.2. Applications

Despite their strong link to theoretical computer science CAs can be used in many other
disciplines. In this section some concrete examples will be presented.

2.2.1. Mathematics

Wolfram [26] suggested in 1986 an efficient random sequence generator based on CA. For
this he analyzed a one-dimensional CA in which each cell had one of only two states:
0 and 1. He discussed the use of rule 30 which shows, despite its simplicity, a highly
complex evolution pattern which seems to be completely random (see figure 2.1). The
time sequences created by this CA were analyzed by a variety of empirical, combinatorial,
statistical, dynamical systems theory and computation theory methods.

Figure 2.1.: Chaotic behavior of rule 30 after 250 time steps. The rule
was applied on an initial configuration consisting of only one
black cell (state 1) surrounded by white cells (state 0). Source:
http://mathworld.wolfram.com/Rule30.html.

2.2.2. Biology

Green [16] has applied CAs in the field of ecology. He used CAs to represent tree loca-
tions in simulations about forest dynamics. With these simulations he showed that forest
dynamics are seriously affected by spatial patterns associated with fire, seed dispersal,

6
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2.2. Applications

and the distribution of plants and resources. Ermentrout and Edelstein-Keshet [11] have
applied CAs in other fields, such as developmental biology, neurobiology and population
biology. They also described CAs that appear in models for fibroblast aggregation, branch-
ing networks, trail following and neuronal maps.

2.2.3. Cryptography

Cryptographic systems are mathematical systems for encrypting or transforming infor-
mation. In 1987 Guan [17] found that public-key cryptosystems could be based on CAs.
Having a string of binary bits (the plain text) which is supposed to be sent to a specific
receptor, the major task of the cryptographic system is to cut the plain text into blocks of a
specific length, say m, and then apply an invertible function f : {0, 1}m → {0, 1}m on each
of them. This function should be easy to compute (for enciphering), its inverse should be
hard to find (for deciphering by intruders), but with some key information the inverse im-
age should be easy to compute. Considering the complex behavior of CAs, Guan proposed
the use of an invertible CA to perform this conversion. He argues that the running time of
all known algorithms for breaking the system grow exponentially with m.

2.2.4. Medicine

CA-models have been used to model many aspects of tumor growth and tumor-induced
angiogenesis. Alarcón, Byrne and Maini [1] used a two-dimensional CA in which the cells
could have one of 4 states: empty cell, cancer cell, normal cell and vessel. In order to
consider blood flow (which most of the existing mathematical models at that time did not
do) they developed their model in two steps. 1) First they determined the distribution
of oxygen in a native vascular network. 2) Then they studied the dynamics of a colony
of normal and cancerous cells placed in the resulting environment of step 1. Their most
important result was that the heterogeneity of the oxygen distribution plays an important
role in the restriction of cancerous colonies growth.

2.2.5. Geography

In 1993 Deadman, Brown and Gimblett [10] used a CA-based model to predict patterns of
residential development. They used rules that changed according to the changing condi-
tions and policies of the location and compared the obtained spatial patterns with mea-
sured data. Their model presented strong structural significance, but also some predictive
significance. As they write “It has the potential to be run into the future to predict the out-
come of policy decisions”. A similar approach was carried out some years later by White,
Engelen and Uljee [24]. They used a CA to represent the evolution of urban land-use pat-
terns and got similar results: the predictions of their model were relatively accurate and
suggested that CA-based models may be useful in a planning context.

7
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3. Characterization of Cellular Automata

There is no widely recognized formal and mathematical definition of CAs. Nevertheless it
is important to have a formal description as a starting point. For this, a very general but
formal characterization of CAs will be presented. This characterization will comprehend
most of the CAs described in the literature. Hence, a more concrete definition of CAs will
be presented and at the end of this chapter we will discuss some special type of CAs and
some important properties of them.

3.1. General definition

Despite the fact that no established definition of CAs exists, a CA is a tuple (S, C, η, C0, φ, )
where:

• S is a finite set of states,

• C is a (potentially infinite) set of cells,

• η : C → Ck is a neighbourhood function, k ∈ N,

• C0 : C → S is an initial configuration (we can also denote Conf = SC andC0 ∈ Conf),
and

• φ : Sk → S is the so-called transition rule (also known as the look-up table or simply
rule)

To describe the temporal behavior of the CA, a last function is needed. Let us call it
the transition function Φ. This function is then Φ : Conf → Conf defined by Φ(C)(c) =
ϕ(C(c1), . . . , C(ck)) where (c1, . . . , ck) = η(c).

This definition of CAs is very general and additionally too abstract for this purpose. For
this reason it is appropriate to present an alternative, more concrete one.

3.2. Alternative definition

Both in the application areas for CAs presented in section 2.2 and in the CAs presented in
the second part of this thesis, the arrangement of the cells within the configuration plays a
significant role. For this reason it is required to make an alternative definition by changing
the configuration from a multiset of unordered elements to a d-dimensional lattice. The
other elements are defined almost analogously. In order to understand the idea of this
new definition let us first introduce it for d = 1. Subsequently, the cases d = 2 and d > 2
will be sketched.

9



3. Characterization of Cellular Automata

3.2.1. One-dimensional lattice

For the moment let d be 1.

• The configuration at time t is an infinite vector containing the ordered cells:
ct = (. . . , c−1t , c0t , c

1
t , . . .).

• For simplicity reasons let the set of states be S = {0, 1, . . . , q − 1}.

• The neighborhood of a cell cit at time t is parameterized by a radius r and is defined
as η(cit) = (ci−rt , . . . , cit, . . . , c

i+r
t ) ∈ S2r+1. Each cell has then 2r + 1 neighbors.

• The transition rule is also parameterized by r but its functionality stays the same. It
maps the state values of all neighbors from one cell to its new state value: φ(η(cit)) =
cit+1.

The transition function Φ for describing the temporal behavior of the CA has also the
same functionality as described in section 3.1. The only difference is the formal definition
of the mapping: Φ(ct) = (. . . , φ(η(c−1t )), φ(η(c0t )), φ(η(c1t )), . . .) = ct+1. A one-dimensional
(d = 1), two-state (q = 2), three-neighbor (r = 1) CA is called an elementary Cellular
Automaton.

3.2.2. Two-dimensional lattice

Let now d be 2. Consider the cells ci,jt to be ordered in respect of two indexes i and j on a
two-dimensional lattice. The set of states and the look-up table remain the same, whereas
the configuration, the neighborhood, and the transition function can be described using
matrices instead of vectors. We obtain:

• The configuration at time t as a matrix containing the ordered cells:

ct =



. . .
...

...
...

...
· · · c−1,−1t c−1,0t c−1,1t · · ·
· · · c0,−1t c0,0t c0,1t · · ·
· · · c1,−1t c1,0t c1,1t · · ·

...
...

...
...

. . .


• The same set of states: S = {0, 1, . . . , q − 1}.

• The neighborhood of a cell ci,jt at time t including all cells within the radius r both
vertically and horizontally:

η(ci,jt ) =



ci−r,j−rt · · · ci−r,jt · · · ci−r,j+rt
...

. . .
...

...
...

ci,j−rt · · · ci,jt · · · ci,j+rt
...

...
...

. . .
...

ci+r,j−rt · · · ci+r,jt · · · ci+r,j+rt


∈ S(2r+1)×(2r+1)

10



3.3. Variations

Each cell has then (2r + 1)2 neighbors.

• The functionality of the transition rule stays the same again: φ(η(cit)) = cit+1.

The functionality of the transition function Φ also stays unchanged. The difference is,
again, the arrangement of the resulting elements:

Φ(ct) =



. . .
...

...
...

...
· · · φ(η(c−1,−1t )) φ(η(c−1,0t )) φ(η(c−1,1t )) · · ·
· · · φ(η(c0,−1t )) φ(η(c0,0t )) φ(η(c0,1t )) · · ·
· · · φ(η(c1,−1t )) φ(η(c1,0t )) φ(η(c1,1t )) · · ·

...
...

...
...

. . .


= ct+1

3.2.3. d-dimensional lattice

For d ∈ N, d > 2 the cells ci0,i1,...,id−1
t are ordered in respect to d indexes i0, i1, . . . , id−1

on a d-dimensional lattice and each cell has (2r + 1)d neighbors. This case is not very
interesting, since such CAs are rarely used (to best of the author’s knowledge there are
no papers which are concerned with CAs with more than 2 dimensions). Furthermore, its
definition would not contribute to the understanding of this thesis, but probably to the
confusion of the reader.

3.3. Variations

The difference between the general and the alternative definition explained above is the
design of the configuration. In the same way there is a possibility of making variations on
the remaining components. This chapter shall depict some of these variations.

3.3.1. Boundary conditions

According to our definitions, the configuration of a CA consists of an infinite number of
cells. However, for practical issues, it might be necessary to take some limitations into
consideration. This is the case when using CAs in a modelling context as the memory of
computers is finite. These considerations lead to the necessity of defining the boundaries
of the now finite configuration. Some examples for this are:

Open boundaries We assume that cells with constant state values exist outside of the
lattice. These cells are used to compute the new state of the border cells, but they do never
change their state. We could, for example, define in the Game of Life some “dead open
borders”. For this we set the state of all cells around the lattice as “dead”. This would
represent a scenario in which it is impossible for a cell (or whatever a cell represents) to
live outside of the lattice, e.g. an island.

11



3. Characterization of Cellular Automata

Reflective boundaries The reflective borders consist of cells that “reflect” the state of the
border cells. This case is similar to the open borders but with cells of varying state outside
of the lattice. These cells change their state according to the actual state of the border cells
as if the boundary was a mirror.

Periodic boundaries Another possibility is to “fold” the lattice so that two endings bor-
der to each other. For d = 1 this means a circular lattice. For d = 2 there are many
possibilities. Some of them are depicted in figure 3.1.

(a) Sphere. (b) Real projective plane. (c) Klein bottle. (d) Torus.

Figure 3.1.: Fundamental polygons representing some possibilities of folding a two-
dimensional lattice. The color of the arrows indicate which two end-
ings should border to each other. The direction of the arrows indi-
cates how both endings are to be oriented before folding them. Source:
http://en.wikipedia.org/wiki/Fundamental_polygon.

3.3.2. Cell arrangement

Concerning the arrangement of the cells, there are other possibilities than only d-dimensional
lattices. For example, in a two-dimensional CA we assume that the cells are squares. We
could change their form to triangles or hexagons and define their neighborhood according
to the new arrangement (see figure 3.2).

12
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3.3. Variations

(a) Triangular lattice. (b) Hexagonal lattice.

Figure 3.2.: Two possible CAs with two-dimensional lattices of non-squared cells. In the
depicted cases the cells could have two (a) and three (b) different states. Source:
http://en.wikipedia.org/wiki/Hexagonal_lattice.

3.3.3. Neighborhood definition

Of course, independently from the border conditions and the cell arrangement, we can
also change the definition of a cell’s neighborhood so that it is not well-defined by one
parameter r. A good example to illustrate this is the difference between the von Neumann
neighborhood [23] and the Moore neighborhood [22] (see figure 3.3).

(a) The von Neumann neighborhood. (b) The Moore neighborhood.

Figure 3.3.: The von Neumann and the Moore neighborhood for r ∈ {0, 1, 2, 3}. Sources:
see [23] and [22].

3.3.4. Transition rule determination

This variation is very important to understand this thesis. The CAs defined above consider
one deterministic transition rule φ. This means that for each input the output is deter-
minable. Another possibility to define φ is by using probabilistic elements. A probabilistic

13
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3. Characterization of Cellular Automata

Cellular Automaton (PCA) uses a random variable X : Ω→ {0, 1, . . . ,m− 1} and defines a
probabilistic transition rule φ using some deterministic transition rules φ0, φ1, . . . , φm−1:

φ(η(cit)) =



φ0(η(cit)) if X = 0,
φ1(η(cit)) if X = 1,

...
φm−1(η(cit)) if X = m− 1.

14



4. Majority Problem

The Majority Problem is perhaps the most studied computational task for CAs. It consists
of finding the best transition rule for a one-dimensional, two-state (S = {0, 1}) CA that
best performs majority voting. This means that the CA must recognize whether there are
more 0’s than 1’s or more 1’s than 0’s in its initial configuration (IC) and within a given
number of time units converge to a homogeneus configuration. This final homogeneus
configuration must then consist of only 1’s if the number of 1’s in the IC was greater or
vice versa.

The Majority Problem would be trivial for a computer with a central control unit. In
contrast, for CAs this represents a real challenge, since they can only tranfer information
at a finite speed relying only on local information, while the Majority Problem demands
the recognition of a global property. For this reason this task is a good example of the phe-
nomenon of emergence in complex systems. This means, that its solution is an emergent
global property of a system of locally interacting agents.

For a CA with r = 1 (i.e. 3 neighbors) and perhaps r = 2 (i.e. 5 neighbors) an exhaustive
evaluation of all 22

2r+1
rules would come into consideration. In these cases the task of

finding the rule that performs best would be trivial. However, there is no scientific paper
claiming the finding of a one- or two-radius rule that perfectly solves this problem. Hence,
the most studied case nowadays is for r = 3 (i.e. 7 neighbors). The purpose of this chapter is
to present the Majority Problem and the most relevant approaches to solve it. The existence
of a perfect solution is discussed in the last section.

4.1. Problem statement

The Majority Problem is a special case of the Density Classification Problem, which can be
defined as follows: Given an one-dimensional, two-state Cellular Automaton with initial
configuration c0 consisting of a cells with state 1 and b cells with state 0, a rule φ and a
density threshold ρ ∈ [0, 1], the Density Classification Problem is considered to be:

• unspecified, if a
a+b = ρ,

• solved, if ∃t′.∀t. (t > t′ =⇒ ( a
a+b < ρ ∧ ct = {0}a+b) ∨ ( a

a+b > ρ ∧ ct = {1}a+b)),

• unsolved, otherwise.

The Majority Problem corresponds to the Density Classification Problem for ρ = 1
2 . The

task is then to find a rule φ that performs best. For this we define the quality of a rule φ
as the fraction of all 2a+b ICs for which φ solves the problem. However, since in most of
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the cases it is impossible to test all possible ICs we will define the performance of a φ (de-
noted PnN (φ)) as the fraction of N randomly generated ICs of length n for which φ solves
the problem and use it instead of the quality as an indicator of efficiency.

There are some conventions that have been indirectly established since the first attempt
to solve this problem:

• To avoid the unspecified case a
a+b = ρ it is common to use odd numbers for the lattice

size n.

• It is also common the use of periodic boundaries (see 3.3.1).

• The rules are often encoded as a bit string by listing its output bits in lexicographic
order of neighborhood configuration. This means that the string starts with the value
of φ((0, . . . , 0)) and ends with the value of φ((1, . . . , 1)). The length of a such a bit
string is 22r+1.

4.2. Human-writen solutions

According to the definition and the quality measurement discussed above, there have been
many propositions in the last 30 years for solving the Majority Problem. Some of them
were designed “by hand” and some others by any heuristic methods. The first human-
writen solution was created by Gács, Kurdyumov and Levin in 1978 [14]. They created
a rule (known as GKL rule according to their names) while studying reliable computa-
tion under random noise. Their rule had a performance of about 81.6% with n = 149 and
N = 106.

This rule is surprisingly efficient, although, there have been other hand-coded attempts
to create better rules. In 1993 Davis [9] modified the GKL-rule and created a rule with
0.02% better performance. Two years later, Das [6] did the same and scored 0.378% better
than Davis.

4.3. Evolved solutions

Mitchel has done a lot of research on the emergence of synchronous CA strategies during
evolution. One of her most important research with regard to the Majority Problem is the
one presented with Das and Crutchfield in [8]. They evolved rules using a genetic algo-
rithm (GA) operating on fixed-length strings. Their GA starts with a random set of rules
(called chromosomes in the first generation) and evolved them to get better performances.
The evolution from one generation of rules into the next one is specified the following
way:

1. A new set of random ICs is generated.

2. The performance of each rule is calculated

3. The population of rules is ranked in order of performance.

16



4.4. Overview

4. The best of them (the so called elite) are copied without modification to the next
generation

5. The remaining rules for the next generation are formed by single-point crossovers
between randomly chosen pairs of the elite with replacement.

6. Each of the resulting rules from the crossovers is then mutated a fixed number of
times before it passes to the next generation.

They observed that in successful evolution experiments, the performance of the best rules
increased according to what they called epochs. Each epoch corresponds to a new, better
solution strategy. They also observed that the final rules produced by this evolutional pro-
cess showed in most of the runs unsophisticated strategies that consisted in expanding
large blocks of adjacent 1’s or 0’s. Most of these rules had performances between 65% and
70%. The best result obtained using this method was 76.9%.

Mitchel and coworkers are still actively working on solving problems of collective be-
haviour in CAs. In 1995 they adapted their work on the Majority Problem to the Synchro-
nisation Problem, which led to better results: Their synchronisation rule φsync reached a
performance of 100% [7].

Andre et al. were able to evolve rules using genetic programming (GP) with automatically
defined functions [2]. They did not represent the chromosomes as boolean strings, but as
functions {0, 1}2r+1 → {0, 1}. Then they evolved them using the GP paradigm of repre-
senting them as tree structures and using the same operators as in the GA. In this case a
crossover consisted of switching nodes between different chromosomes and a mutation
consisted of replacing the information of a node by another. For each node they used func-
tions {0, 1} × {0, 1} → {0, 1} The results show the success of this method. Their evolved
rule achieved an accuracy of 82.326% which was better than any known rule by that time.

Finally, Juillé and Pollack presented a significant improvement for the Majority Problem
by using a coevolutionary learning (CL) method [18]. CL involves the embedding of adaptive
learning agents in a fitness environment that dynamically responds to their progress. With
this method they evolved a rule with a performance of about 86.3%. This is the best result
known to date.

4.4. Overview

A summary of all the rules for solving the Majority Problem discussed here is presented
in table 4.1. Their explicit string representation (from bit 0 to bit 127) are presented in table
4.2. All experiments were carried out on a lattice with n = 149 cells.

4.5. Perfect Solution

The probably most interesting question regarding the Majority Problem is how effective a
rule can possibly be. Despite the fact that this is still an open question, there have been
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Number Year Authors Method Performance
1 1978 Gács, Kurdyumov, Levin human-writen 81.6%
2 1994 Das, Mitchell, Crutchfield Genetic Algorithm 76.9%
3 1995 Davis human-writen 81.8%
4 1995 Das human-writen 82.178%
5 1996 Andre, Bennett, Koza Genetic Programming 82.326%
6 1998 Juillé, Pollack Coevulotionary Learning 86.3%

Table 4.1.: Summary of the most important solutions

Number Rule
1 00000000 01011111 00000000 01011111 00000000 01011111 00000000 01011111

00000000 01011111 11111111 01011111 00000000 01011111 11111111 01011111
2 N/A

3 00000000 00101111 00000011 01011111 00000000 00011111 11001111 00011111
00000000 00101111 11111100 01011111 00000000 00011111 11111111 00011111

4 00000111 00000000 00000111 11111111 00001111 00000000 00001111 11111111
00001111 00000000 00000111 11111111 00001111 00110001 00001111 11111111

5 00000101 00000000 01010101 00000101 00000101 00000000 01010101 00000101
01010101 11111111 01010101 11111111 01010101 11111111 01010101 11111111

6 00010100 01011111 01000000 00000000 00010111 11111100 00000010 00010111
00010100 01011111 00000011 00001111 00010111 11111111 11111111 11010111

Table 4.2.: Bit string representation of the most important solutions

some attempts to find at least a partial answer to it. In 1995 Land and Belew proved that
there exists no two-state CA with finite radius that perfectly solves the Density Classifica-
tion Problem [19]. Assuming that such a CA exists, they considered a sequence of initial
configurations in which the Majority Problem cannot always be solved. They argue that,
since the system is deterministic, every cell surrounded only by cells with the same state
must turn to the same state as the cells surrounding it. The same way, any rule that per-
forms majority voting perfectly can never make the density pass over the ρ threshold. They
show that in the case of a single standing cell, any assumed perfect rule would do one of
two unpermitted things: 1) if the fraction of cells with the same state as the isolated cell is
greater than ρ then the rule would cancel the state of that cell out and cause the density to
cross the ρ threshold, or 2) if the fraction of cells with the same state as the isolated cell is
less than ρ then the rule would convert the state of some cells to the state of the isolated
cell causing the ratio to become greater than ρ.

Their difficulties in evolving a better solution than the one presented by Das, Mitchell
and Crutchfield in [8] led them to question if such a CA exists. However, the same way
variations of CAs exist, there have also been made some changes on the Majority Problem
in order to reach solutions with 100% quality.
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One year after Land and Belew proved the non-existence of a perfect rule, Capcarre, Sip-
per and Tomassini published a method to solve the Majority Problem by simply changing
the output specification [4]. If a

a+b >
1
2 the final configuration should consist of one or

more blocks of at least two consecutive 1’s mixed by an alternation of 0’s and 1’s, in the
case a

a+b <
1
2 it should consist of one or more blocks of at least two consecutive 0’s mixed

by an alternation of 0’s and 1’s, and if a
a+b = 1

2 it should consist only of an alternation of
0’s and 1’s (see figure 4.1). For this they used an elementary Cellular Automaton (see 3.2.1)
with the following rule:

φ184(η(cit)) =

{
ci−1t , if cit = 0,
ci+1
t , if cit = 1,

This rule is known as rule 184 because of the interpretation of its string representation as
a decimal number. In their work, Two-state, r=1 Cellular Automaton that Classifies Density,
they prove the property of rule 184 to solve this modified version of the Majority Problem
by using 4 lemmas. These are important to understand the main properties of rule 184,
which is fundamental for this thesis.

Figure 4.1.: Example of the use of rule 184 on four initial configurations. White pixels
represent cells with state 0, black pixels represent cells with state 1. The first
200 time steps of each simulation are presented. All four configurations have
lattice size n = 149. The initial configurations of (a), (b) and (c) were randomly
generated, the one of (d) consists of 75 cells with state 1 and 74 with state 0.
Source: see [4]

Lemma 1. Density is maintained through time. Let D(ct) denote the density of the
configuration at time t. This is the fraction of n cells that have state 1. This lemma states
that ∀t ∈ N. D(c0) = D(ct).

Lemma 2. Coexististing blocks annihilate each other if the 0’s are left from the 1’s. In
case there exists a fragment of the configuration of the form: . . . , x, 0, . . . , 0, 1, . . . , 1, y, . . .
with a block of α 0’s, a block of β 1’s and x, y ∈ {0, 1} after v = min{α, β} − 1 transitions
the number of 0’s and the number of 1’s between x and y will be reduced by v respectively.
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Lemma 3. Blocks of 0’s move from left to right. Blocks of 1’s from right to left. Mathe-
matically this means:

(cit, . . . , c
i+α
t ) = (0, . . . , 0) =⇒ (ci−1t−1, . . . , c

i−1+α
t−1 ) = (0, . . . , 0),

(cit, . . . , c
i+α
t ) = (1, . . . , 1) =⇒ (ci+1

t−1, . . . , c
i+1+α
t−1 ) = (1, . . . , 1).

Lemma 4. There are no two blocks that coexist after time dn2 e. This lemma follows di-
rectly from lemma 2 and lemma 3 and from the periodic boundaries of the lattice. By
combining it with lemma 1 the property of rule 184 to solve this problem can easily be
proved.

Another possibility to solve the Majority Problem is the one presented by Sipper, Cap-
carrere and Ronald in 1998 [5]. Their approach also consists of changing the output speci-
fication, this time turning the periodic boundaries to open boundaries (the left cell is fixed
at state 0 and the right one is fixed at state 1) and using again rule 184. The resulting con-
figuration corresponds to the IC with sorted cells: 0’s to the left and 1’s to the right. An
example of a run using this method is depicted in figure 4.2.

Figure 4.2.: Space-time diagram showing one solution to the Majority Problem’s version
presented by Sipper, Capcarrere and Ronald in [5]. The lattice has size n = 149.
The state of the cell at position n

2 is 1 (black), thus D(c0) >
1
2 .

In 1997, Fukś proposed the use of two elementary Cellular Automata to solve this prob-
lem [12]. He described the process as an assembly line consisting of two machines working
one after the other. These machines represented two elementary CA, one of them using
rule 184 and the other one using rule 232. This rule can be defined as:

φ232(η(cit)) =

{
0, if ci−1t + cit + ci+1

t ∈ {0, 1},
1, if ci−1t + cit + ci+1

t ∈ {2, 3}.

If there are more 1’s than 0’s in a cell’s neighborhood, this rule turns the state of that cell
into 1. If there are more 0’s than 1’s, this rule turns the cell is set to state 1. This is why it
is also known as the majority rule. This way, the first CA would use φ184 to “stir” the cells
to get the final configuration as described by Capcarre, Sipper and Tomassini in [4]. The
second CA would use φ232 to expand the remaining block of consecutive 0’s or 1’s until it
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reaches the length of n.

Fukś has also suggested the use of elementary diffusive probabilistic Cellular Au-
tomata to solve this problem in a “non-deterministic sense” [13]. The transition rule of
his diffusive PCA maps a cell’s state to 1 (or 0) with a probability proportional to the num-
ber of 1’s (or of 0’s) in its neighborhood. This means that his version of a PCA does not use
the same random variable X at each application of the transition function. In fact, at each
application of φ, it uses a different random variable depending on the current states of the
cell’s neighborhood.
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5. Approach

The goal of this thesis is to analyze the computational power of PCAs using the example
of the Majority Problem. The use of rule 184 to “stir” the cells together with rule 232, as
described by Fukś, suggests that the combination of them might lead to good results. For
this reason this thesis will mainly discuss this combination. While Fukś used either more
than one elementary CA [12] or more than one random variable in a PCA [13] to solve
this task, we will focus on using one single elementary PCA that uses only one random
variable. Note that the neighborhood of an elementary PCA consists of only 3 neighbors
(r = 1), in opposition to the solutions presented in chapter 4 where CAs with 7 neighbors
(r = 3) were used. We will show that with the probabilistic extension better results can be
expected despite the small neighborhood.

Our PCA is (as described in 3.3.4) a CA that uses a random variable X : Ω → {0, 1} to
define its transition rule φ as follows:

φ(η(cit)) =

{
φ184(η(cit)) if X = 0,
φ232(η(cit)) if X = 1.

Let p be the probability ofX being 1 and 1−p the probability ofX being 0, mathematically
this is written: Pr[X = 1] = p and Pr[X = 0] = 1 − p. Having defined this probabilistic
rule we would be able to start drawing conclusions, e.g. it is not difficult to see that the
bigger the probability ofX to be 0, the better will be the performance of the rule (for p > 0).
For this reason we will not only construct a PCA which performs best and run some sim-
ulations of it to get an approximation of its quality. Additionally the influence that some
parameters might have on the performance of the PCA will be analyzed.

In this case it is not only important to consider the performance as the fraction of all
randomly generated ICs which were correctly solved, but also to consider the time units
needed to solve the problem. For this reason it is appropriate to define the average run-
ning time of a rule φ (denoted T nN (φ)) as the average of the time units needed in N runs
on randomly generated ICs of length n. Of course the average running time is a statisti-
cal approximation of the expected running time, which is too complex to calculate in this
case. As in the works presented in chapters 4.2 and 4.3 we will rely on the law of large
numbers to be able to substitute probability measures (e.g. quality, expected running time)
by statistical ones (e.g. performance, average running time). Using these notations we are
able to argue, taking the example presented above, that choosing p → 0 is a bad strategy
because we would indeed expect PnN (φ)→ 1, but T nN (φ)→∞which is suboptimal.

To perform this task a tool is needed in order to simulate different runs from different
PCAs and compare them. This tool should allow the user to construct a PCA by typing
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in the values of all parameters that define it (e.g. lattice size, density, rules, probability
distribution, etc.) and plot one or many runs of it. These plots may vary depending on
their purpose. It can be either

• a space-time diagram displaying the evolution of one single run,

• a bar chart showing the performance and the average running time of a PCA after N
independent runs, or

• line charts plotting the performance and the average running time of a PCA against
one chosen parameter which is gradualy increased through its range.

This tool will then be used to generate and visualize the data that is necessary in order
to examine and draw conclusions about a PCA’s behavior.

26



6. Tool

The task of the implemented tool is, as mentioned in chapter 5, to simulate single runs of
a constructed PCA. The aim of this chapter is to present this tool. For this it will describe
its components and explain their implementation in a very brief manner. This chapter is
subdivided in 2 sections: The first one will discuss all parameters used to describe a sim-
ulation run and how they are organized. In this case, a simulation consists not only of a
PCA, but also of a problem to be solved. Although this work will be exclusively concerned
with the Majority Problem, other problems were also implemented for possible further in-
vestigations beyond density classification. Section 2 will explain all three functionalities of
the tool in a more detailed way than it was done in chapters 1 and 5.

The tool was developed within about 8 weeks and was programmed in Java using the
NetBeans IDE.

6.1. Structure

As aforementioned, a simulation can be characterized by a set of parameters. This set can
be taken out of figure 6.1. Their names are listed at the left side of the window. In order to
bring some structure into the program, the parameters were classified into three groups:
the Problem, the Configuration and the Rule. According to figure 6.1, items 1 and 2 belong to
the Problem, items 3 to 6 to the Configuration, and the last 4 items to the Rule. Each group
was implemented as an own java-class.

6.1.1. Problem

This is the first component. The Problem class defines which type of problem is to be
solved. It includes the maximum amount of time units allowed to solve the problem and
a problem-specific parameter (if required). For this class 3 different main instances exist:
the well-known Density Classification Problem, the Synchronisation Problem (as presented in
[7]) and a user defined problem which allows the user to define its own final-configuration.
This class includes the implementation of a method that, depending on the problem type,
the actual time unit and the actual configuration of the lattice recognize if the problem
has been solved (correctly or incorrectly), if the maximum amount of time units has been
reached, or if the next configuration has to be computed. The parameters of this class are
the following:

Problem type Its value is an integer of {0, 1, 2}. Depending on this value, one of the
three instances mentioned above is created. This parameter is important when checking
the status of the run after each lattice update.
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Figure 6.1.: Main window of the tool. The color used to write the name of each parameter
depends on the component it belongs to. Red: Problem, yellow: Configuration
and green: Rule.

Density threshold This parameter is optional, since it only requires a concrete value if
the problem type is set for the Density Classification Problem. It represents the value of
ρ ∈ [0, 1] as described in chapter 4.1. If set to 1

2 the problem will correspond to the Majority
Problem.

Final configuration The final configuration is represented as an array containing only 0’s
and 1’s. It represents the configuration that is to be reached in order to solve a user defined
problem. Of course, this parameter is also optional and requires a concrete value only in
case of the user defined problem.

Maximum time units Since PCAs are non-deterministic automata, it is difficult to rec-
ognize for a specific configuration if the problem can still be solved or not. In case of a
normal CA the program could stop as soon as it reaches a specific configuration that it had
before. For this reason it is suitable to include an upper bound for the time units. In case
the problem is not solved within this number of time steps, the run is considered not ter-
minated. The value of this parameter is of {1, . . . , 1000}. For special cases two additional
values are also allowed: 10000 and∞.

6.1.2. Configuration

The second important component is the Configuration class. This class represents the ac-
tual configuration of all cells in the lattice. After each time unit the Configuration-object
is updated by adjusting all its parameters to the new lattice. In case that the tool has to
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output not only the result, but the whole evolution of the lattice through the time, a copy
of the relevant parameters are stored in a list. Otherwise only the initial and the actual
configuration are stored in order to determine if the problem has been solved or not. This
class has an implemented method that applies a rule (determined by a simulated random
variable) to all cells. It also includes the following parameters:

Lattice size In order to avoid too high latencies the value of the lattice size n will be
bounded by 200. This means that n ∈ {3, ..., 200}.

Initial density This parameter representsD(c0) ∈ [0, 1] as described in chapter 4.5, Lemma
1) and is also optional. It can be used to test the performance of a rule combination on an
IC with a determined density. If not set, the lattice will either be completely random,
which means that the initial density will be binomial distributed centered at n

2 , or it can
be manually set by the user. If set to a concrete number, the program will set the first
bn · (1−D(c0)) + 1

2c = b cells to 0 and the last bn ·D(c0) + 1
2c = a to 1.

Fraction of randomly distributed cells This parameter is only considered iff the Initial
density has also been considered. The value of this parameter determines the fraction of
randomly chosen cells to be stirred with the rest of the cells. If its value is 0 the cells will
be perfectly ordered: first b 0’s followed by a 1’s. If its value is 1 all a + b cells will be
randomly positioned in the lattice. All values within the range [0, 1] are accepted.

Initial configuration This is the most important parameter for this class. It contains the
values of all cells arranged in an array of integers.

6.1.3. Rule

The last important component is the Rule class. It defines the probabilistic rule that is to
be applied on the configuration at each time step. As the two classes described above, an
object of this class also consists of a set of parameters. These are:

Number of rules As used in chapter 3.3.4, the number of rules corresponds to the value
of m. For user-friendliness and because it is more than enough for our purpose, this pa-
rameter will be bounded by 10.

Success probability This is another optional parameter. It represents (as it name reveals)
the parameter p ∈ [0, 1] of a binomial distributed random variable X ∼ Bin(n, p) in which
n + 1 is the number of deterministic rules involved. With this parameter, it is possible to
define the probabilities of all rules by changing only one value. This can be very useful
when using only 2 rules. In that case p would represent the probability of choosing the
first rule (e.g, rule 184) and 1− p the probability of choosing the second one (e.g, rule 232).

Uniform rule application The value of this parameter is boolean: If true, the rule to be
applied will be chosen once for the whole lattice at each time step. If false, the rule to be
applied will be chosen for each cell independently.
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Rules and probabilities These parameters include the concrete values of them rules that
constitute the probabilistic rule used by the PCA and their concrete probabilities. These
can either be set manually by the user, or depend on the succes probability.

6.2. Functions

As already mentioned, there are three main tasks the tool should perform. In chapter 1
a specification of them was presented. Furthermore, chapter 5 outlined their respective
outputs in a very brief manner. This section will provide a more concrete and in-deep
description of these three features which are each represented in the program as a class.

6.2.1. Experiment

An Experiment simulates a run on a single PCA. An object of this class consists mainly
of the three components aforementioned: a Problem, a Configuration and a Rule. At first,
the values of their parameters are not initialized. This means that some of them might not
have been set yet, e.g. the initial configuration is empty, because its content depends on
the value of the initial density and the fraction of randomly distributed cells. Each of these
components has an implementet initialize()-method which correctly sets all values
that depend on other ones.

The most important method in this class is the run()-method. When run() is invoked,
first all three components are initialized and a counter of time units is set to zero. Then the
rule is iteratively applied to the configuration and the counter is increased by one. After
each round, the status of the problem is checked by the Problem-object. This process is
repeated until the problem is solved, or the maximum number of time units is reached.
The evolution of the configuration during this process is stored in a list. When the run
is finished and the result is known, the evolution of the configuration is taken from the
list and drawn in a space-time diagram. This diagram is accompanied by a written report
containing the input (i.e. the inserted values for all parameters) and output (i.e. the status
∈ {correctly solved, incorrectly solved,not terminated} and the number of time units needed)
of the run.

Figure 6.2 presents an Experiment run as a black box and an example of an Experiment
output. For analytical reasons a detailed output of the run is written in the console. This
extra output includes the value of each cell, the value of the density, and the deterministic
rule applied at each time unit to each cell.
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(a) Black box representation. (b) Output example.

Figure 6.2.: Black box representation and output example of an Experiment run. (a) Input
arrows are grouped by classes. Dashed arrows represent optional input param-
eters. (b) Left: The evolution of the PCA as a time-space diagram. White pixels
represent cells with state 0, black pixels represent cells with state 1. Right: Writ-
ten Report containing all important information about the input and output.

In case a random parameter is desired, a button for randomly generating values was
implemented for almost each parameter. This button is identified with an icon of a pencil,
see figure 6.1. When pressed, the program fills out the corresponding text field with a
random value from a uniform distribution over all allowed values.

6.2.2. Statistic

An object of the Statistic class represents the repetition of many independent instances of
the same run. Since PCA are non-deterministic, such a statistic makes always sense, even
if no parameter has a random value. A Statistic-object consists of only two components: an
Experiment object and an integer representing the number of Experiments to be ran, i.e. N .

The most important method in this class is also the run()-method. When invoked,
a copy of the Experiment-object is created using the overwritten clone()-method. The
components of this copy are then initialized as described above, ran, and both results (sta-
tus and time) are stored. This is repeated with a total of N copies of the object. At the end,
the accumulated results for the status are drawn in a bar-chart and their concrete values
are presented together with the average running time and the input data in a written re-
port. Figure 6.3 displays a black box representing the run of a Statistic and an example of
a Statistic output.
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(a) Black box representation. (b) Output example.

Figure 6.3.: Black box representation and output example of an Statistic run. (a) Input ar-
rows are grouped by classes. Dashed arrows represent optional input param-
eters. (b) Left: The amount of Experiments that were correctly solved (green),
incorrectly solve (red) and did not terminate (blue) as a bar-chart. Right: Writ-
ten Report containing all important information about the input and output.

When creating a Statistic, a second button for most of the parameters will be set enabled.
This button is identified with an icon of a magic wand (see figure 6.1) and allows to chose
the value “random” for that parameter. This, in contrast to the first button, does not create
a random value at that moment that remains constant through the run. In fact, the param-
eter gets a concrete, random value only when it is initialized. Since the initialize()-
method is only invoked on copies of the original Experiment-object, this allows each copy
of the Experiment to have a different value from the others. This option is very useful
when running simulations on random lattices.

6.2.3. Graph

A Graph object represents the repetition of many independent, slightly different Statis-
tics. Its components are a Statistic object and two integers: one representing the number
of Statistic to be ran, say M , and another one representing one of 6 parameters. I will refer
to this parameter as the variable. The variable can be chosen by pressing on the button
identified with a magnifier icon (see figure 6.1). Since for the output, the variable is taken
as the abscissa, only parameters with numerical values can be chosen to be the variable.

The run()-method from a Graph object works almost the same way as the run()-
method from a Statistic object: It creates M copies of the Statistic object, runs them in-
dependently, and stores the results. The only difference is that the copied objects are not
equal. The value of the variable is systematically increased during the copying process.
Each of the Statistics can be represented as two pairs: the first component of both pairs is
the value of the variable, the second component is the accumulated status results for one
pair, and the average running time for the other. This way the performance P and average
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running time T can easilly be plotted against the chosen variable. The output consists of
both plots and a written report. A black box representation of a Graph run and an example
of Graph out are depicted in figure 6.4. In order to be able to manipulate the graphs, the
arrays containing the coordinates of all pairs are also written in the console.

(a) Black box representation. (b) Output example.

Figure 6.4.: Black box representation and output example of a Graph run. (a) Input ar-
rows are grouped by classes. Dashed arrows represent optional input parame-
ters. (b) Top left: The Goodness-function. Ordinate: Fraction of correctly solved
(green dots), incorrectly solved (red dots), and not terminated (blue dots) Ex-
periments. The green dots represent P . Abscissa: the variable. Bottom left:
T as a function. Each dot represents one Statistic. The three coordinates of
each dot’s color (represented in the RGB color model) are proportional to the
fraction of all three status. This is useful to recognize the estimate value of P
observing only the T -function. Right: Written Report containing all important
information about the input and output.
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As mentioned in chapter 5, we will explore the computational power of PCAs on the ba-
sis of the Majority Problem simulating them with the tool described in chapter 6. These
PCAs will consist of only three neighbors (r = 1) and only one random variable X which
determines the probability of using one of two rules: φ184 or φ232 at each time step. This
chapter will present the most significant results obtained. In chapter 5 was mentioned that
it is important to analyze not only the performance P of the probabilistic rule φ but also
its average running time T . The first section of this chapter will present an example run
which depicts the reason for the importance of such an analysis. Moreover, it will explain
the importance of the probability distribution between φ184 and φ232. In sections 2 and 3
a concrete analysis of the running time depending on this probability distribution will be
carried out.

7.1. The importance of time analysis

In chapter 5 was also mentioned that a correlation between the probability of using rule
184 and the performance of the probabilistic rule exists. This correlation can be seen in
figure 7.1. The green dots in the left graph represent the performance of the probabilistic
rule P(φ) as a function of the probability of using rule 232. In order to avoid the distortion
of the green curve caused by the case of not terminated runs (blue dots), the maximum
time units were set to infinity. The graph on the right represents the running time of the
probabilistic rule T (φ) as a function of the same probability.

Figure 7.1.: Output of a Graph run with the success probability as the variable with range
[0.01, 0.49]. Left: fraction of correctly solved, incorrectly solved and not termi-
nated Experiments. Right: The average running time. For the computation of
each dot 5000 Experiments were carried out. The lattice size was 149 and the
configuration was randomly generated after each Experiment.
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These graphs show clearly the importance of time analysis. Note that within the range
[0.01, 0.25] the performance of φ only falls about 11% (approximately from 95% to 85%),
while the average running time falls from about 3250 to about 250. This means a fall
of about 82%. Other simulations have confirmed that using probabilities smaller than
0.01, the performance of φ can reach 100%. The problem here are the extremly high time
costs. Hence, the efficiency of a rule can also depend on the running time. Naturally, the
importance of a PCA’s running time for its efficiency depends on the context in which the
Majority Problem has to be solved.

7.2. Average running time for low probabilities

If we compare the fall of both functions as it was described in section 1 in a range that
starts not at 0.01, but at a smaller number, the difference between both falls would be even
greater. The question that arises at this point is in which way T (φ) is correlated to the
probability of using φ232. In order to understand the behavior of T , a closer analysis is
needed.

Let us denote the probability of applying rule 232 with p. If p is close to 0, then the frac-
tion of times φ184 is used is expected to be close to 1. This means for the PCA that it will
reach very fastly a configuration consisting of alternating 1’s and 0’s and perhaps a block
of more than one consecutive cells with state 0 (if the initial density is less than 0.5) or with
state 1 (if the initial density is greater than 0.5). From that point on, the PCA will start
expanding each of these blocks by one cell until a homogeneous configuration is reached.
This behavior is depicted in figure 7.2. When expanding these blocks, the number of time
units between one expansion and another can be described using a random variable. Each
of these expansions occurs at each time unit with probability p, i.e. when rule 232 is ap-
plied. Thus, this random variable has a geometric distribution with parameter p. Therefore,
the expected number of time units between one expansion and another is 1

p .

This analysis suggests that a strong relationship between the behavior of T for small
values for p and a hyperbola exists. To show this relationship, the ordinate will be scaled
applying the function f : x 7→ 1

x to it. Plotting the same dataset from the right graph in
figure 7.1 reveals a linear relationship between p and T (φ) (see figure 7.3). This means
that for some constants c1, c2 ∈ R there is a relationship 1

T (φ) = c1 · p + c2. Knowing this
we can write the function of the average running time, parameterized with c1 and c2, as:
T (φ) = 1

c1·p+c2 . Of course, this can only be guaranteed for p ∈ [0.01, 0.1] (see figure 7.3).

In order to find a concrete function that fully describes the behavior of T (φ) for small
values of p, a more accurate approach is necessary. This approach should use stochas-
tical elements to compute some important values that were ignored in our analysis, e.g.
the expected number of time units for the PCA to converge to the state of homogeneous
blocks, the expected number of blocks that arise in that state, or the expected length of
these blocks. This way the computation and interpretation of the values of c1 and c2 would
be possible.
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Figure 7.2.: Three different examples of Experiments with p = 0.01 (left), p = 0.05 (center)
and p = 0.1 (right). Lattice size was 200 in all of them and the configuration
was randomly generated.

Figure 7.3.: Graph after scaling the ordinate using the function f .
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7.3. Average running time for high probabilities

Figure 7.1 also shows that the values of T (φ) reach a lowest point at about 0.3 and then
start to rise. This property of T (φ) cannot be analyzed the same way it was done in section
2, because the assumption of a fast convergence against the state of homogeneous blocks
is not given. In order to understand this behavior we will analyze some independent
Experiment runs with higher values for p.

In figure 7.4 three independent runs on random initial configurations are shown. The be-
havior of the PCA exhibited in these Experiments are completely different from the ones
discussed above. We observe strong defined homogeneous blocks that do not move. In
this case we can also observe some “expanding” blocks as it was in the case with small
values for p. The difference is that these blocks are not homogeneous. Instead, they consist
of alternating 0’s and 1’s. (see Lemma 3 in chapter 4.5) The application of φ184 causes
that these heterogeneous blocks appear, where a block of 1’s borders to the right with a
block of 0’s, and grow, both one cell to the left and one cell to the right. The application of
φ232 reduces existing heterogeneous blocks by one cell at each side of it. These expanding
blocks have the property that, when reaching the length of one of the homogeneous blocks
next to them, that block of only 1’s (or 0’s) disappears and does not appear again. A run of
this kind terminates when, existing only two big homogeneous blocks of cells, one block
of alternating 1’s and 0’s between them reaches the size (in any direction) of one of them.

Figure 7.4.: Three different examples of Experiments with p = 0.5. Lattice size was 200 in
all of them and the configuration was randomly generated.

This behavior can be modelled as an irregular random walk over non-negative integers, i.e.
a formalisation of a trajectory that consists of taking successive random steps. This can be
represented as a Markov chain (see figure 7.5). Rule 184 causes the random walker to make
a step to the right, rule 232 causes him to make a step to the left. In order to terminate,
the PCA must first expand the heterogeneous blocks until one of them reaches the size of
the smaller of the two homogeneous blocks remaining at the end, and then reduce it again
so that only one homogeneous block remains. In the model of the random walker this
would mean that the PCA terminates as soon as the random walker reaches the last state
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in the Markov Chain (state z) and returns to its starting point (state 0). Unfortunately the
computation of the expectet value of this random walk involves solving a system of linear
equations consisting of z + 1 variables and z + 1 equations. This would not be difficult to
solve if the value of z was known. z represents the length of the smallest homogeneous
block of the two blocks remaining at the end. Again, a more accurate approach is necessary
in order to fully understand the behavior of T (φ) for greater values of p. This approach
should use stochastical elements to compute the expected value of z.

Figure 7.5.: Markov Chain representing a random walk over {0, 1, . . . , z}. For p 6= 1
2 it is an

irregular random walk.
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8. Conclusions

The aim of this thesis was to examine the performance of probabilistic Cellular Automata
when solving the Majority Problem and investigate whether their probabilistic extension
is more powerful in this respect. In this work it was presented not only how efficiently
a probabilistic Cellular Automaton is able to solve this problem, but also the influence
that probabilities have in the solving time. It was discussed how it is possible to reach a
performance of 100%, and also how this affects the running time of the Automaton. It is
important to note that probabilistic Cellular Automata with only 3 neighbors and only ran-
dom variable were used in this analysis. Only by adding one more rule to the Automata,
it was able to perform best of all other Automata mentioned in this work, even having
used the smallest possible neighborhood (3 neighbors), while the deterministic Cellular
Automata discussed before had 7 neighbors.

As it has been discussed in chapters 2 and 3, Cellular Automata are very simple in their
definition, but can show very complex behavior while evolving. In this sense the proba-
bilistic Cellular Automata are not different. In order to fully understand their behavior it
is important not only to understand the behavior of normal Cellular Automata, but also to
be skilled in probability theory.

Of course, solving computational problems are not the only application for probabilistic
Cellular Automata. As seen in chapter 2, there are many applications for normal Cellular
Automata that involve modelling of processes. Almost all of the processes presented in
chapter 2 are non-deterministic. Thus, a probabilistic Cellular Automaton would probably
perform much better than conventional Cellular Automata

The approach presented in this thesis can also be generalized to solve other known prob-
lems, e.g. the Synchronisation Problem. Moreover, it could also be combined with some of
the approaches discussed in chapter 4, where Cellular Automata rules were evolved using
genetic methods. One possibility would be to evolve a probabilistic Cellular Automata.
In this case a chromosome would not only be represented as a rule, but as a set of rules
and a probability distribution. Of course the implementation of the algorithm and of the
crossover and the mutation should be adapted.
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