Interdisziplinäres Projekt Glatte Kurven aus diskreten Punkten

Carlos Camino

cfcamino@mytum.de

16. Oktober 2013

Ziele dieser Arbeit

- 1. Reduzierte Datenmenge
- 2. Effiziente Berechnung
- 3. Ästhetische Darstellung

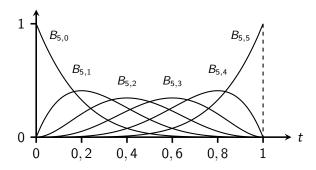
Bernsteinpolynome

Definition

Sei $n \in \mathbb{N}_0$ und $i \in \{0, \dots, n\}$. Das i-te Bernsteinpolynom n-ten Grades hat die Gestalt

$$B_{n,i}(t) := \binom{n}{i} \cdot t^i \cdot (1-t)^{n-i}$$
.

Beispiel



Bézierkurven

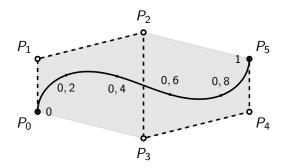
Definition

Seien $P_0,\ldots,P_n\in\mathbb{R}^d$ beliebige Punkte. Eine Kurve $C=\{X(t)\mid t\in[0,1]\}$ mit

$$X(t) = \sum_{i=0}^{n} B_{n,i}(t) \cdot P_{i}$$

heißt Bézierkurve n-ten Grades.

Beispiel



B-Spline-Basisfunktionen

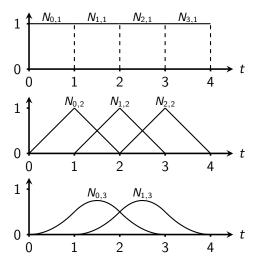
Definition

Für einen gegebenen Vektor $T=(t_0,t_1,\ldots,t_{m-1})$ der Länge m sind die B-Spline-Basisfunktionen rekursiv definiert:

$$N_{i,k}(t) = egin{cases} I_{[t_i,t_{i+1})}(t) & ext{falls } k=1 \ rac{t-t_i}{t_{i+k-1}-t_i} \cdot N_{i,k-1}(t) + rac{t_{i+k}-t}{t_{i+k}-t_{i+1}} \cdot N_{i+1,k-1}(t) & ext{sonst} \end{cases}$$

Beispiel

Basisfunktionen für T = (0, 1, 2, 3, 4) und k = 1, 2, 3:



B-Splines

Definition

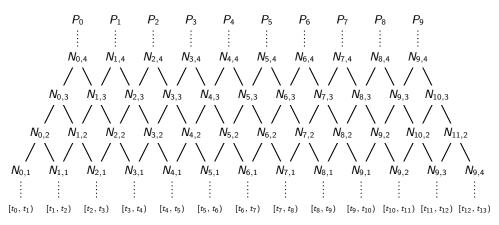
Seien $P_0, P_1, \ldots, P_{n-1} \in \mathbb{R}^d$ beliebige Punkte und $T = (t_0, t_1, \ldots, t_{m-1})$ ein Knotenvektor. Eine Kurve $C = \{X(t) \mid t \in [t_{k-1}, t_{m-k})\}$ mit

$$X(t) = \sum_{i=0}^{n-1} N_{i,k}(t) \cdot P_i$$

heißt B-Spline der Ordnung k.

Beispiel

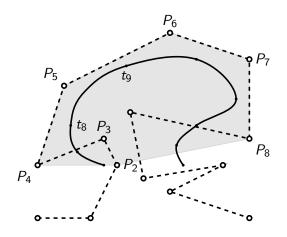
Berechnungsschema für k = 4, n = 10 und m = 14:



Es gilt immer:

$$m = n + k$$
.

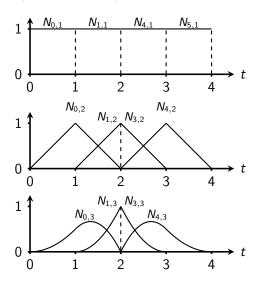
Beispiel



Mehrfachknoten

Beispiel

Basisfunktionen für T = (0, 1, 2, 2, 2, 3, 4) und k = 1, 2, 3:



Eingespannte B-Splines

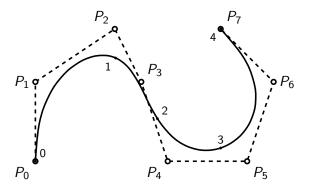
Eingespannte B-Splines haben einen Knotenvektor der Form

$$T = \underbrace{\left(t_0, \dots, t_{k-1}, \underbrace{t_k, \dots, t_{m-k-1}}_{\text{innere Knoten}}, \underbrace{t_{m-k}, \dots, t_{m-1}}_{\text{gleiche Knoten}}\right)}.$$

Für sie gilt $N_{0,k}(t_{k-1}) = 1$ und $N_{n-1,k}(t_{m-k}) = 1$.

Beispiel

B-Spline mit k = 5 und T = (0,0,0,0,0,1,2,3,4,4,4,4,4):



Einfügen von Knoten

Ziel: Füge t_i in $T = (t_0, \ldots, t_{i-1}, t_{i+1}, \ldots, t_m)$ hinzu. **Methode:**

1. Berechnung von Hilfsvariablen l_0, \ldots, l_k mithilfe der Formel:

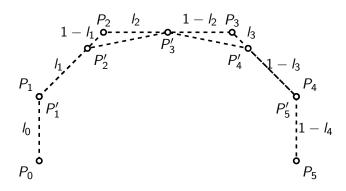
$$l_j = \frac{t_i - t_{i-k+j}}{t_{i+j} - t_{i-k+j}}$$
 $(j = 0, ..., k)$.

2. Berechnung von Hilfspunkten P'_{i-k}, \dots, P'_{i} . Es gilt:

$$P'_{j+i-k} = (1-l_j) \cdot P_{j+i-k-1} + l_j \cdot P_{j+i-k}$$
 $(j=0,\ldots,k)$.

3. Ersetzen der Punkte P_{i-k}, \ldots, P_{i-1} durch die Hilfspunkte P'_{i-k}, \ldots, P'_{i} .

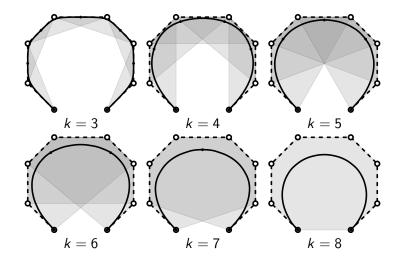
Beispiel



Konsequenzen der Lokalitätseigenschaft

Die konvexen Hüllen von B-Splines sind kleiner als die von Bézierkurven. Die konvexe Hülle einer Bézierkurve entspricht der desjenigen B-Splines mit Ordnung k=n.

Beispiel



Implementierung des Fensters

Idee: Benutze Fenster mit fester Größe > 2k.

Algorithmus:

- 1. Speichere Knoten im Fenster mit aktueller Anzahl w an Punkten.
- 2. Wenn das Fenster voll ist oder keine Punkte mehr dazukommen, lösche in den w 2k inneren Spalten des Fensters so viele Punkte wie es geht.
- 3. Füge übriggebliebenen Punkte in den approximierten B-Spline hinzu und bewege das Fenster.

Wie wählt man t_i ?

1. Chord-Length-Parametrisierung:

$$t_i = t_{i-1} + \frac{1}{k-1} \sum_{j=i-k+1}^{i-1} |\overline{P_{j-1}P_j}|$$

2. Event-Time-Parametrisierung:

$$t_i = t_{i-1} + \frac{1}{k-1} \sum_{j=i-k+1}^{i-1} e_j$$

Verwendete Variablen:

Variable	Bedeutung
windowCapacity	Obere Grenze für die die Anzahl der aktiven Knoten im
	Fenster, d.h. für $w - 2k$
order	Ordnung k des B-Splines
useEventTime	Event-Time (true) oder Chord-Length (false)
winX[i]	x -Koordinate des Punktes P_i im Fenster
winY[i]	y-Koordinate des Punktes P_i im Fenster
winE[i]	Event time Differenz e_i des Punktes P_i im Fenster
winT[i]	Knoten t_i im Fenster
winN	Aktuelle Anzahl w der Punkte im Fenster
bspX[i]	x -Koordinate des Punktes P_i in der approximierten Kurve
bspY[i]	y-Koordinate des Punktes P_i in der approximierten Kurve
bspT[i]	Knoten t_i in der approximierten Kurve
bspN	Aktuelle Anzahl der Punkte in der approximierten Kurve

Löschen von Knoten

Erinnerung: Einfügen von t_i in T

- 1. Zuerst bestimme P'_{i-k}, \ldots, P'_{i} mit $P'_{i-k+j} = (1 l_j) \cdot P_{i-k+j-1} + l_j \cdot P_{i-k+j}$ und $l_j = \frac{t_i t_{i-k+j}}{t_{i+j} t_{i-k+j}}$.
- 2. Dann ersetze P_{i-k}, \ldots, P_{i-1} durch P'_{i-k}, \ldots, P'_{i} .

Als Matrix:

$$P' = A \cdot P$$

mit
$$P = (P_{i-k}, \dots, P_{i-1})^T$$
, $P' = (P'_{i-k}, \dots, P'_i)^T$ und

$$A = \begin{pmatrix} l_0 & 0 & 0 & \cdots & 0 \\ 1 - l_1 & l_1 & 0 & \cdots & 0 \\ 0 & 1 - l_2 & l_2 & \cdots & 0 \\ 0 & 0 & 1 - l_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 - l_k \end{pmatrix}.$$

Neues Ziel: Lösche t_r von T.

Ansatz: Finde $S = (S_{r-k}, \dots, S_{r-1})$, so dass

$$||P - A \cdot S||_p$$

minimal ist und ersetze P durch S.

Spezielle Lösungen:

$$Q_j = rac{1}{I_{k-r+j}} \cdot P_j + \left(1 - rac{1}{I_{k-r+j}}
ight) \cdot Q_{i-1} \qquad (r-k \leq j \leq r-1)$$

und

$$R_{j} = \frac{1}{I_{k-r+j+1}} \cdot P_{j+1} + \left(1 - \frac{1}{I_{k-r+j+1}}\right) \cdot R_{i+1} \qquad (r-k \le j \le r-1)$$

Allgemeine Lösung:

$$S_j = (1 - \mu_{k-r+j}) \cdot Q_j + \mu_{k-r+j} \cdot R_j \qquad (r - k \le j \le r - 1).$$

Satz

 $S = (S_{r-k}, \dots, S_{r-1})^T$ ist genau dann eine Lösung von $\min_S ||P - A \cdot S||_{\infty}$, wenn μ_0, \dots, μ_{k-1} die Gleichung

$$\mu_j = \frac{1}{\gamma_{\infty}} \cdot \sum_{i=0}^{j} \begin{bmatrix} k-1 \\ i+1 \end{bmatrix} \qquad (0 \le j \le k-1)$$

 $\text{mit } \gamma_{\infty} = \textstyle \sum_{i=0}^k \left[\begin{smallmatrix} k-1 \\ i+1 \end{smallmatrix} \right] \text{ erfüllen. Insbesondere gilt dann } w_r = ||P - A \cdot S||_{\infty} = \frac{||D||_2}{\hat{\gamma}_{\infty}}.$

Bemerkung:

Die Werte von $\begin{bmatrix} k-1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} k-1 \\ 2 \end{bmatrix}$, ..., $\begin{bmatrix} k-1 \\ k+1 \end{bmatrix}$ und D lassen sich aus den Werten von t_{r-k},\ldots,t_{r+k} berechnen.

Satz

 $S = (S_{r-k}, \dots, S_{r-1})^T$ ist genau dann eine Lösung von $\min_S ||P - A \cdot S||_2$, wenn μ_0, \dots, μ_{k-1} die Gleichung

$$\mu_j = \frac{1}{\gamma_2} \cdot \sum_{i=0}^{j} \begin{bmatrix} k-1 \\ i+1 \end{bmatrix}^2 \qquad (0 \le j \le k-1)$$

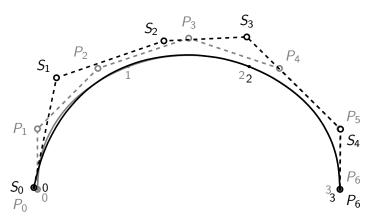
mit $\gamma_2 = \sum_{i=0}^k {k-1 \brack i+1}^2$ erfüllen. Insbesondere gilt dann $w_r = ||P - A \cdot S||_2 = \frac{||D||_2}{\sqrt{\hat{\gamma}_2}}$.

Bemerkung:

Die Werte von $\begin{bmatrix} k-1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} k-1 \\ 2 \end{bmatrix}$, ..., $\begin{bmatrix} k-1 \\ k+1 \end{bmatrix}$ und D lassen sich aus den Werten von t_{r-k},\ldots,t_{r+k} berechnen.

Beispiel

Eingepannter B-Spline der Ordnung k=5 mit n=7 Kontrollpunkten und Knotenvektor T=(0,0,0,0,0,1,2,3,3,3,3) vor (grau) und nach (schwarz) dem Löschen des Knotens 1:

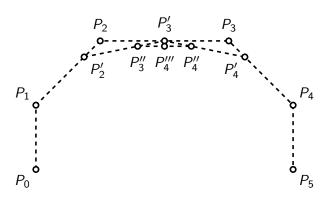


Verwendete Variablen:

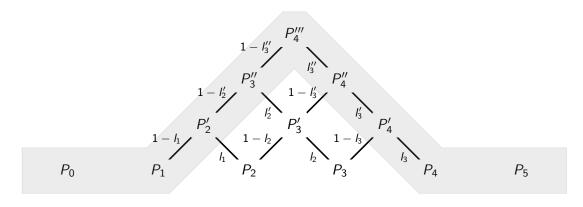
Variable	Bedeutung
maxAlteration	Obere Grenze für die Veränderung der Kurve
	(je größer, deste mehr Knoten werden gelöscht)
useNormL2	Wahl der diskreten Approximation: L_{∞} oder L_{∞}
<pre>auxL[i][j]</pre>	Wert von I_j für den Knoten t_i
<pre>auxB[i][j]</pre>	Wert von $\left[egin{array}{c} k-1 \ j+1 \end{array} ight]$ für den Knoten t_i
<pre>auxD[i]</pre>	Wert von $ D _2$ für den Knoten t_i
<pre>auxG[i]</pre>	Wert von γ_2 bzw. von γ_∞ für den Knoten t_i
auxW[i]	Wert von w_i für den Knoten t_i
<pre>auxM[i][j]</pre>	Wert von μ_j für den Knoten t_i
auxQX[j]	x -Koordinate von Q_{j+r-k} für den zu löschenden Knoten
auxQY[j]	y-Koordinate von Q_{j+r-k} für den zu löschenden Knoten
auxRX[j]	x -Koordinate von R_{j+r-k} für den zu löschenden Knoten
auxRY[j]	y-Koordinate von R_{j+r-k} für den zu löschenden Knoten
auxSX[j]	x -Koordinate von S_{j+r-k} für den zu löschenden Knoten
auxSY[j]	y-Koordinate von S_{j+r-k} für den zu löschenden Knoten

Darstellung als Bézierkurven

Der Algorithmus von de Boor erlaubt es einen Knoten mehrmals in T einzufügen und berechnet die Kontrollpunkte nach dem Einfügen.



Die Berechnung der Punkte erfolgt nach folgendem Schema:



Man nennt dies Anordnung de Boor-Netz

Hat ein Knoten Multiplizität k-1, so kann der Knotenvektor

$$\mathcal{T} = (t_0, \dots, t_{i-1}, \underbrace{t_i, \dots, t_{i+k-2}}_{ ext{gleiche Knoten}}, t_{i+k-1}, \dots, t_{m-1})$$

in

$$T_1 = (t_0, \dots, \underbrace{t_i, \dots, t_{i+k-2}}_{ ext{gleiche Knoten}})$$
 und $T_2 = (\underbrace{t_i, \dots, t_{i+k-2}}_{ ext{gleiche Knoten}}, \dots, t_{m-1})$.

zerlegt werden.

Schließlich kann man die Kontrollpunkte eines B-Splines mit Knotenvektor

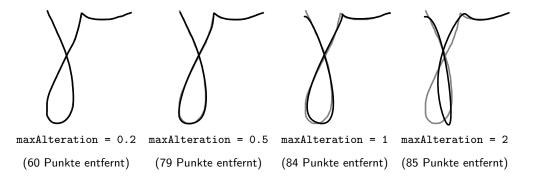
$$T = (\underbrace{t_0, \dots, t_{k-1}}_{\text{gleiche Knoten}}, \underbrace{t_k, \dots, t_{2k-1}}_{\text{gleiche Knoten}})$$

direkt als Kontrollpunkte für eine Bézierkurve übernommen werden.

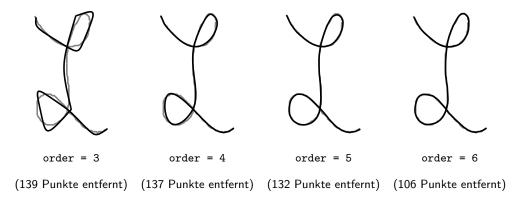
Verwendete Variablen:

Variable	Bedeutung
netL[a][b]	Wert von $I_a^{(b)}$ im de Boor Netz
netX[a][b]	x-Koordinate von $P_{a+i-k+1}^{(b)}$ im de Boor Netz y-Koordinate von $P_{a+i-k+1}^{(b)}$ im de Boor Netz
netY[a][b]	y-Koordinate von $P_{a+i-k+1}^{(b)}$ im de Boor Netz
bezX[i][j]	x-Koordinate des i-ten Kontrollpunktes der j-Bézierkurve
bezY[i][j]	y-Koordinate des i-ten Kontrollpunktes der j-Bézierkurve
bezN	Aktuelle Anzahl der generierten Bézierkurven
remX[i]	x-Koordinate des i-ten Punktes im aktuellen Rest-B-Splines
remY[i]	x-Koordinate des i-ten Punktes im aktuellen Rest-B-Splines
remT[i]	i-ter Knoten des aktuellen Rest-B-Splines

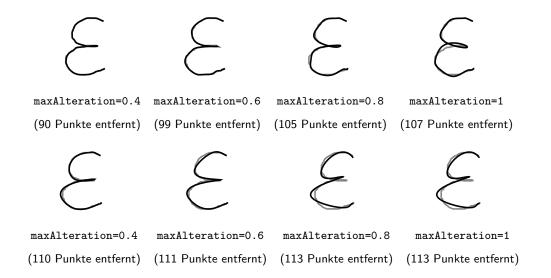
Ergebnisse



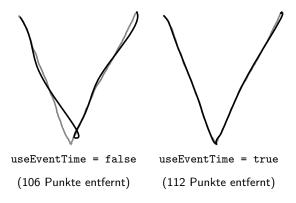
Vergleich von vier Kurven mit order = 4, windowCapacity = 5, useNormL2 = false und useEventTime = true für verschiedene Werte von maxAlteration. Die urprüngliche Kurve (grau) besteht aus 93 Punkten.



Vergleich von vier Kurven mit maxAlteration = 0.5, windowCapacity = 5, useNormL2 = false und useEventTime = true für verschiedene Werte von order. Die urprüngliche Kurve (grau) besteht aus 151 Punkten.



Vergleich von vier Kurven mit windowCapacity = 5, order = 4 und useEventTime = true für verschiedene Werte von maxVariation und useNormL2. Für die oberen vier Kurven gilt useNormL2 = true, für die unteren useNormL2 = false. Die urprüngliche Kurve besteht aus 121 Punkten und ist grau eingezeichnet worden.



Vergleich zweier Kurven mit maxAlteration = 2, windowCapacity = 5, order = 4 und useNormL2 = true. Die Knoten der linken Kurve wurden mit der Chord-Length-Parametrisierung berechnet (useEventTime = false), die der rechten mit der Event-Time-Parametrisierung (useEventTime = true). Die urprüngliche Kurve besteht aus 121 Punkten und ist grau eingezeichnet worden. Beim Zeichnen dieser Kurve wurde der Stift eine Sekunde lang an der Spitze der Kurve gehalten.