Stochastic Scheduling with two Processors and Arbitrary Precedence Relations

Carlos Camino

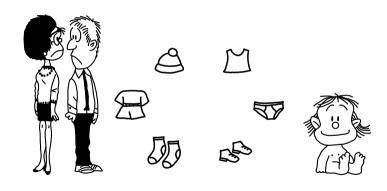
August 4, 2015

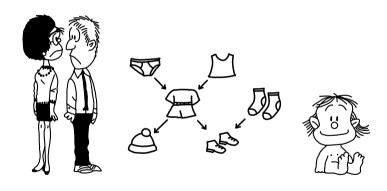
Overview

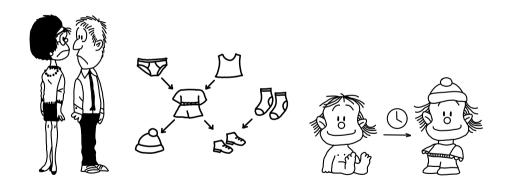
- I. Introduction
- II. Theoretical Foundations
- III. Methods
- IV. Results and Discussion
- V. Conclusion

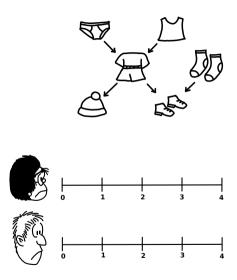
Overview

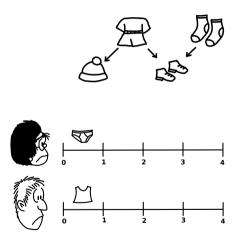
- I. Introduction
- II. Theoretical Foundations
- III. Methods
- IV. Results and Discussion
- V. Conclusion

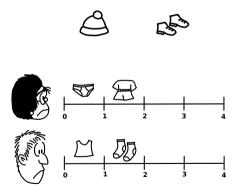


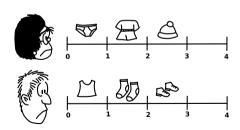


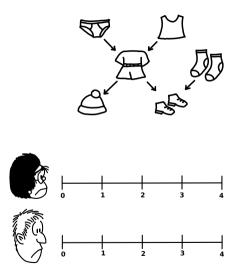


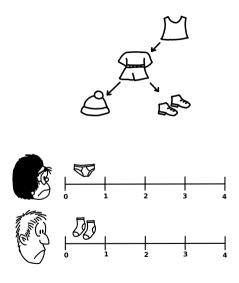


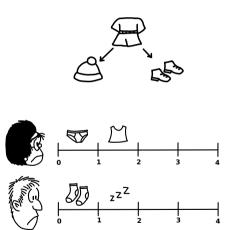


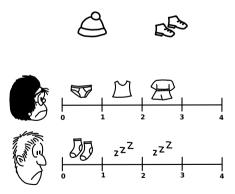


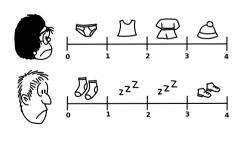












Literature Review

Problem	Reference
$P2 \mid prec \mid C_{max}$	Solved by Coffman and Graham in 1972.
$P2 \mid intree, exp \mid \mathbb{E}[C_{max}]$	Solved by Chandy and Reynolds in 1975.
$P2 \mid prec, exp \mid \mathbb{E}[C_{max}]$	Subject of this thesis.

Overview

- I. Introduction
- II. Theoretical Foundations
- III. Methods
- IV. Results and Discussion
- V. Conclusion

Probability Theory

Why consider exponentially distributed random variables $X_i \sim \text{Exp}(\lambda_i)$?

Expected value:

$$\mathbb{E}[X_i] = \frac{1}{\lambda_i}.$$

Minimum:

$$\min\{X_1,\ldots,X_n\}\sim \mathsf{Exp}(\lambda_1+\ldots+\lambda_n).$$

Memorylessness:

$$\Pr[X_i > x + y | X_i > y] = \Pr[X_i > x]$$
 $(x, y > 0).$

Snapshots

Let m be the number of available machines. A snapshot S = (T, P, A) consists of

- ▶ a finite set *T*,
- ▶ a binary relation $P \subseteq T \times T$ and
- ightharpoonup a subset $A \subseteq T$,

such that (T, P) is a DAG, $|A| \leq m$ and every $t \in A$ is a source in (T, P).

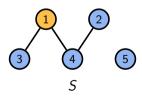
T(S), P(S) and A(S) can be defined as T, P and A, respectively.

Example

Let m = 2. The snapshot S with

- $T(S) = \{1, 2, 3, 4, 5\},\$
- $P(S) = \{(1,3), (1,4), (2,4)\}$ and
- ► $A(S) = \{1\}$

can be represented as



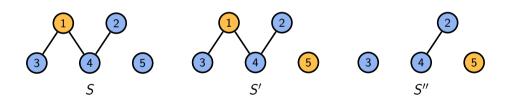
Strategies and Direct Snapshots

- A strategy σ is a function that maps a snapshot S = (T, P, A) to a snapshot $\sigma(S) = (T, P, A')$ with $A \subseteq A'$.
- The resulting snapshot S' after removing a task $t \in A$ from a snapshot S = (T, P, A) is called direct subsnapshot of S.

Example

Snapshots S, S', S'' with

- $\sigma(S) = S'$ for some strategy σ and
- ▶ S'' direct subsnapshot of S':



A formula for the expected makespan $\mathbb{E}[T_S^{\sigma}]$

Assuming independent finishing times $X_1, \ldots, X_n \sim \mathsf{Exp}(1)$ we can derive for a given strategy σ :

$$\begin{split} \mathbb{E}[T_{S}^{\sigma}] &= \mathbb{E}\left[T_{\sigma(S)}^{\sigma}\right] \\ &= \mathbb{E}\left[T_{\sigma(S)}^{\sigma}' + T_{\sigma(S)}^{\sigma}''\right] \\ &= \mathbb{E}\left[T_{\sigma(S)}^{\sigma}'\right] + \mathbb{E}\left[T_{\sigma(S)}^{\sigma}''\right] \\ &= \mathbb{E}[\min\{X_{t} \mid t \in A(\sigma(S))\}] + \sum_{S' \in D(\sigma(S))} \mathbb{E}[T_{S'}^{\sigma}] \cdot \frac{1}{|D(\sigma(S))|} \\ &= \frac{1}{|D(\sigma(S))|} \left(1 + \sum_{S' \in D(\sigma(S))} \mathbb{E}[T_{S'}^{\sigma}]\right), \end{split}$$

where D(S) is the set of all direct subsnapshots of a snapshot S.

For m=2 machines we obtain:

$$\mathbb{E}[T_S^{\sigma}] = \begin{cases} 0 & \text{if } D(\sigma(S)) = \emptyset \\ 1 + \mathbb{E}[T_{S'}^{\sigma}] & \text{if } D(\sigma(S)) = \{S'\} \\ \frac{1}{2} + \frac{1}{2}\mathbb{E}[T_{S'}^{\sigma}] + \frac{1}{2}\mathbb{E}[T_{S''}^{\sigma}] & \text{if } D(\sigma(S)) = \{S', S''\} \text{ for } S' \neq S''. \end{cases}$$

Overview

- I. Introduction
- II. Theoretical Foundations
- III. Methods
- IV. Results and Discussion
- V. Conclusion

Schedule Visualization

PROSIT (Probabilistic Scheduling Interactive Tool) allows to

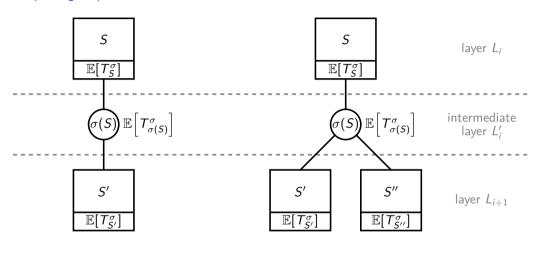
- draw a snapshot and
- visualize its schedule.

It can be downloaded from

www.carlos-camino.de/prosit

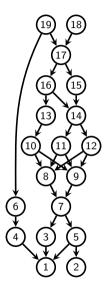
Demo: Schedule example 1

Computing Expectancies

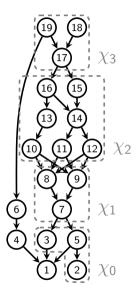


$$\mathbb{E}[T_S^\sigma] = \mathbb{E}\Big[T_{\sigma(S)}^\sigma\Big] = 1 + \mathbb{E}[T_{S'}^\sigma] \qquad \mathbb{E}[T_S^\sigma] = \mathbb{E}\Big[T_{\sigma(S)}^\sigma\Big] = \tfrac{1}{2} + \tfrac{1}{2}\mathbb{E}[T_{S'}^\sigma] + \tfrac{1}{2}\mathbb{E}[T_{S''}^\sigma]$$

The Coffman-Graham Algorithm



The Coffman-Graham Algorithm



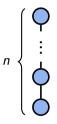
Demo: Schedule example 2

Overview

- I. Introduction
- II. Theoretical Foundations
- III. Methods
- IV. Results and Discussion
- V. Conclusion

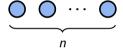
Case Studies on the HLF Policy

The snapshot



has optimal makespan n in the deterministic setting and optimal expected makespan n in the probabilistic setting.

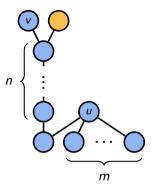
The snapshot



has optimal makespan $\lceil \frac{n}{2} \rceil$ in the deterministic setting and optimal expected makespan $\frac{n+1}{2}$ in the probabilistic setting.

Demos: Two parallel chains and a small counterexample for HLF

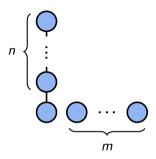
Low Level Tasks with High Priority



For which values of m, n would an optimal strategy . . .

- ...assign *u*?
- ...assign v?

The following snapshot $L_{m,n}$

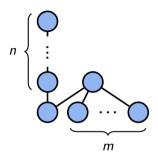


with optimal expected makespan $l_{m,n}$ satisfies $l_{m,0} = \frac{m}{2} + 1$, $l_{0,n} = n + 1$ and

$$I_{m,n} = \frac{1}{2}I_{m-1,n} + \frac{1}{2}I_{m,n-1} + \frac{1}{2}$$

for $m, n \geq 1$.

The following snapshot $H_{m,n}$

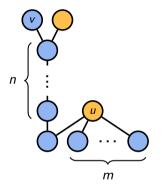


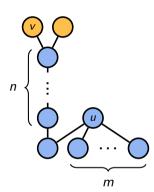
with optimal expected makespan $h_{m,n}$ satisfies $h_{m,0}=rac{m}{2}+2$ and

$$h_{m,n} = \frac{1}{2}h_{m,n-1} + \frac{1}{2}I_{m,n} + \frac{1}{2}$$

for $m, n \geq 1$.

The following snapshots $A_{m,n}^u$ and $A_{m,n}^v$



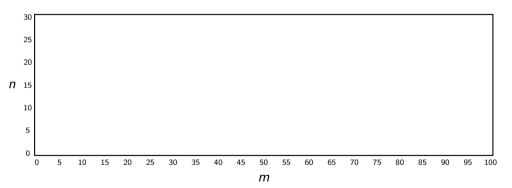


with optimal expected makespans $a_{m,n}^u$ and $a_{m,n}^v$ satisfy

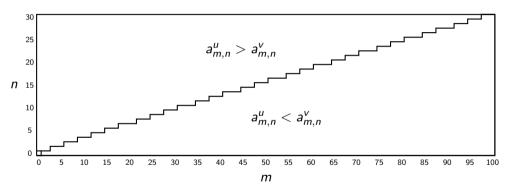
$$a_{m,n}^u = rac{1}{2}I_{m,n+1} + rac{1}{2}h_{m,n+1} + rac{3}{4}$$
 and $a_{m,n}^v = h_{m,n+1} + rac{1}{2}$.

$$a_{m,n}^{\mathsf{v}} = h_{m,n+1} + \frac{1}{2}.$$

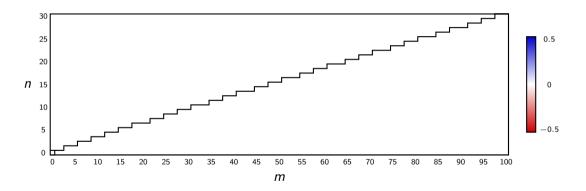
For which m, n it holds $a_{m,n}^u < a_{m,n}^v$? For which $a_{m,n}^u > a_{m,n}^v$?



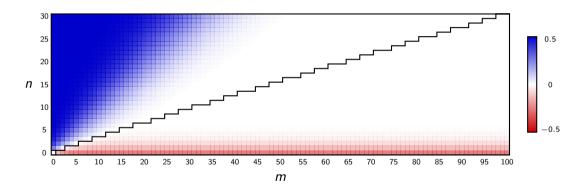
For which m, n it holds $a_{m,n}^u < a_{m,n}^v$? For which $a_{m,n}^u > a_{m,n}^v$?



How big is the difference $a_{m,n}^u - a_{m,n}^v$?



How big is the difference $a_{m,n}^u - a_{m,n}^v$?

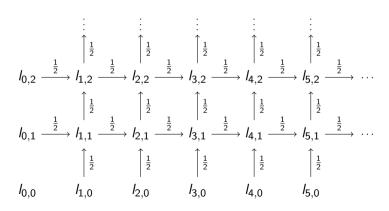


A formula for $I_{m,n}$

The recurrence relation

$$I_{m,n} = \frac{1}{2}I_{m-1,n} + \frac{1}{2}I_{m,n-1} + \frac{1}{2}$$

can be visualized as



Using combinatorical arguments we can derive

$$I_{m,n} = \sum_{i=0}^{m-1} \binom{n+i-1}{i} \left(\frac{1}{2}\right)^{n+i} I_{m-i,0}$$

$$+ \sum_{j=0}^{n-1} \binom{m+j-1}{j} \left(\frac{1}{2}\right)^{m+j} I_{0,n-j}$$

$$+ \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \binom{i+j}{i} \left(\frac{1}{2}\right)^{i+j+1}$$

with
$$I_{m-i,0} = \frac{m-i}{2} + 1$$
 and $I_{0,n-j} = n - j + 1$ for all $(m,n) \in \mathbb{N}_0 \times \mathbb{N}_0 \setminus \{(0,0)\}$.

Using generating functions we can derive the more complete formula

$$I_{m,n} = \sum_{i=0}^{m} \binom{n+i-1}{i} \left(\frac{1}{2}\right)^{n+i} I_{m-i,0}$$

$$+ \sum_{j=0}^{n} \binom{m+j-1}{j} \left(\frac{1}{2}\right)^{m+j} I_{0,n-j}$$

$$+ \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \binom{i+j}{i} \left(\frac{1}{2}\right)^{i+j+1}$$

$$- \left(\frac{1}{2}\right)^{m+n} \binom{m+n}{m} I_{0,0}$$

with
$$l_{m-i,0}=rac{m-i}{2}+1$$
 and $l_{0,n-j}=n-j+1$ for all $(m,n)\in\mathbb{N}_0 imes\mathbb{N}_0$.

Overview

- I. Introduction
- II. Theoretical Foundations
- III. Methods
- IV. Results and Discussion
- V. Conclusion

Adaptations of PROSIT

- other distributions
- more sophisticated strategies
- ▶ runtime optimizations

Further Analyses

- consider other task parameters
- find closed-form expressions for $l_{m,n}$, $h_{m,n}$, ...