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Literature Review

Problem Reference

P2 | prec | Ciax Solved by Coffman and Graham in 1972.
P2 | intree, exp | E[Cmax] Solved by Chandy and Reynolds in 1975.
P2 | prec,exp | E[Cmax] ~ Subject of this thesis.
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Probability Theory
Why consider exponentially distributed random variables X; ~ Exp(\;)?

> Expected value:

1

» Minimum:
min{ Xy, ..., Xp} ~ Exp(A1 + ...+ \p).

» Memorylessness:

Pr[Xi > x + y|Xi > y] = Pr[X; > x] (x,y >0).
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Snapshots

Let m be the number of available machines. A snapshot S = (T, P, A) consists of
> a finite set T,
> a binary relation PC T x T and
» asubset AC T,

such that (T, P) is a DAG, |A] < m and every t € A is a source in (T, P).

T(S), P(S) and A(S) can be defined as T, P and A, respectively.
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Example
Let m = 2. The snapshot S with

» T(S)=1{1,2,3,4,5},

» P(S)=1{(1,3),(1,4),(2,4)} and
> A(S) = {1}

can be represented as

ONN©O
® ©® ©
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Strategies and Direct Snapshots

» A strategy o is a function that maps a snapshot S = (T, P, A) to a snapshot
a(S)=(T,P,A) with AC A"

» The resulting snapshot S’ after removing a task t € A from a snapshot
S=(T,P,A) is called direct subsnapshot of S.
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Example

Snapshots S, S5’, S” with
» 0(S) = S’ for some strategy o and
» S” direct subsnapshot of S':

L @ ONN©O
® ® 6 & ® 6 66 O 6
s s 5"
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A formula for the expected makespan E[T¢]

Assuming independent finishing times Xi, ..., X, ~ Exp(1) we can derive for a given
strategy o:

E[T¢] = E[TZs)]
=E[T%s) + Tds)

=E[T%s)| +E[TZs)"]

1
=E[min{X: |t € A(o(S))}] + Z BTl =r—an
sebs) > D((9))]
1 a
= W (1 —ZIGDX(;(S];E;[TS/]) )

where D(S) is the set of all direct subsnapshots of a snapshot S.
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For m = 2 machines we obtain:

0 if D(0(S)) =0
E[TZ] = { 1+ E[Tg] if D(0(S)) = {5}
1+ 3E[TZ] + LE[TZ)] if D(0(S)) ={S',S"} for S' # S".
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Schedule Visualization
PROSIT (Probabilistic Scheduling Interactive Tool) allows to

» draw a snapshot and
» visualize its schedule.

It can be downloaded from

www.carlos-camino.de/prosit
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www.carlos-camino.de/prosit

Demo: Schedule example 1
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Computing Expectancies

layer L;

intermediate
layer L'

Iayer L,‘ r1

E[T¢] E[T¢] E[T¢]

B[Tg)=E[Tos)| =1+ETE]  E[TE1=E[Tgq)| =+ 1E[TE)+ 3EITE))
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The Coffman-Graham Algorithm
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The Coffman-Graham Algorithm
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Demo: Schedule example 2
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Case Studies on the HLF Policy
The snapshot

A

\

has optimal makespan n in the deterministic setting and optimal expected makespan n
in the probabilistic setting.
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The snapshot

hd

n

has optimal makespan [g} in the deterministic setting and optimal expected makespan

%1 in the probabilistic setting.
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Demos: Two parallel chains and a small counterexample for HLF
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Low Level Tasks with High Priority

For which values of m, n would an optimal strategy ...
...assign u?

...assign v?
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The following snapshot Lp,

with optimal expected makespan I, , satisfies /0 = 5 + 1, o, = n+ 1 and

1 1 1
/m,n = §Im71,n + Elm,nfl + E

for m,n > 1.
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The following snapshot Hp,

¢

|
m

with optimal expected makespan hy, , satisfies hpo = 7 + 2 and

1 1 1
hm,n = Ehm,nfl + Elm,n + E

for m,n > 1.
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The following snapshots Ap, , and A7,

S S
m m

with optimal expected makespans ay, , and ay, , satisfy

1 1 3 1
arl‘ln,n = Elm,n—‘rl + Ehm,n—kl + 2 and a,‘;,yn = hmnt1 + <.
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For which m, n it holds ap, , < ay, ,? For which ag, , > ap, 7
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How big is the difference ap, , — ay, ,?
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A formula for /p,

The recurrence relation

1 1 1
/m,n = Elm—l,n + Elm,n—l + 5
can be visualized as
1 1 1 1 1
3 3 3 3 3
1 1 1 1 1 1
2 2 2 2 2 2
lo,> ho ho .2 la.> I5.2
1 1 1 1 1
3 3 3 3 3
1 1 1 1 1 1
2 2 2 2 2 2
lo,1 h1 b1 1 la.1 I5.1
1 1 1 1 1
3 3 3 3 3
lo,o ho ho h,0 la,0 I5,0
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Using combinatorical arguments we can derive

_ '";1 <n+/— 1) (;) /m_;,o
)
ST

with Im—jo = 75 Jj+1forall (m,n) € Ng x Ng\ {(0,0)}.
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Using generating functions we can derive the more complete formula

T fn+i—1\ 1\
/m,n = Z ( ; ) <2) Imfi,O
" m4j—1\ /1\"H
+ ( J > <2> /O,nfj
—0 J
m—1n—1 (i—i—j) 1 i+j+1
¥ 7)(5)
i=0 j=0 \ ! 2

with Im_jo =2 + 1 and lp_j = n—j + 1 for all (m, n) € Ng x No.
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Adaptations of PROSIT

> other distributions
» more sophisticated strategies

> runtime optimizations

Further Analyses

» consider other task parameters

» find closed-form expressions for I, n, hmp, ...
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