Induktion

à la Übungsleitung

Carlos Camino

www.carlos-camino.de/ds

Wintersemester 2015/16

"Geben Sie explizit Induktionsbasis und Induktionsschritt an. Unterscheiden Sie weiterhin im Induktionsschritt explizit nach Induktionsannahme, der im Induktionsschritt zu zeigenden Behauptung und deren Beweis."

- Aufgabe 5 in der letzten Klausur

Info

Die Induktionsbeweise im DS Trainer bestehen immer aus den drei Teilen

- ► Induktionsanfang (I.A.),
- ► Induktionsvoraussetzung (I.V.) und
- ► Induktionsschluss (I.S.).

Weil es in Aufgabe 5 der letzten Klausur so gefordert wurde, gibt es hier das passende Schema dazu.

Neues Schema

Sei P(n) eine Aussage, die für alle $n \in \mathbb{N}_0$ mit $n \ge n_0$ gezeigt werden muss.

Das ausführlichere Beweisschema lautet:

- ▶ Induktionsbasis: zeige $P(n_0)$.
- ▶ Induktionsschritt: "Sei $n \in \mathbb{N}_0$ mit $n \ge n_0$ beliebig, aber fest."
 - ▶ Induktionsannahme: "Angenommen, es gilt P(n)."
 - ▶ Behauptung: "Es gilt P(n+1)."
 - ▶ Beweis: benutze P(n), um P(n+1) zu zeigen.

Altes Beispiel*

Satz:

Für alle
$$n \in \mathbb{N}$$
 gilt: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

Beweis:

I.A. Für
$$n = 1$$
: $\sum_{k=1}^{1} k = 1 = \frac{1 \cdot (1+1)}{2}$.

I.V. Angenommen, es gilt $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ für ein beliebiges, aber festes $n \in \mathbb{N}$.

I.S.

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + n + 1 \stackrel{\text{i.v.}}{=} \frac{n(n+1)}{2} + n + 1 = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}.$$

*Dieses Schema wird im DS Trainer benutzt und war in den letzten Jahren zulässig.

Neues Beispiel*

Satz:

Für alle
$$n \in \mathbb{N}$$
 gilt: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

Beweis:

- ► Induktionsbasis: Für n = 1 gilt: $\sum_{k=1}^{1} k = 1 = \frac{1 \cdot (1+1)}{2}$. \checkmark
- ▶ Induktionsschritt: Sei $n \in \mathbb{N}$ beliebig, aber fest.
 - ▶ Induktionsannahme: Angenommen, es gilt $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.
 - ▶ Behauptung: Es gilt $\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2}$.
 - ► Beweis:

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + n + 1 = \frac{n(n+1)}{2} + n + 1 = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}.$$

*Gewünschtes Schema dieses Jahr.