Themenüberblick

Dies ist eine Art Checkliste für die Klausurvorbereitung. Zu jedem Thema im Skript habe ich ein paar Leitfragen aufgelistet und die ganzen Übungsaufgaben in den 13 Blättern + Altklausuren nach entsprechenden Themen sortiert. Dabei sind die in Klammern gesetzten Aufgaben, meiner bescheidenen Meinung nach, entweder irrelevant oder zu schwer für eine Klausur. Wie immer, alle Angaben ohne Gewähr:-)

Bemerkungen:

- Die Klausuren von vor 2008 habe ich ignoriert, weil die Vorlesung damals von anderen Professoren gehalten wurde und deswegen vom Stoff her ein bisschen anders ist. 2008 bis 2012 sollte aber zum Üben reichen :-)
- Die Wiederholungsklausuren von 2008 und 2009 habe ich leider nirgends gefunden.
- Zum Gödelisieren der Aufgaben habe ich folgende Abkürzungen benutzt:

B: Blatt H: Hausaufgabe

M: Midtermklausur V: Vorbereitungsaufgabe

E: EndtermklausurS: SemestralklausurZ: Zusatzaufgabe

W: Wiederholungsklausur A: Aufgabe

• Folgende Aufgaben bestehen aus mehreren (Multiple-Choice-) Fragen zu verschiedenen Themen: B3V1, B4H1, B4V2, B5V1, B6V1, B7V1, B9H1, B9V2, B11H1, B11T2, B12H1, B12H3, B12V1, B13H3, W10A6, W11A6.1 W11.2 + natürlich Aufgabe 1 bei allen Klausuren.

1 Grundbegriffe

(s. Überblicksfolien 01)

- Was sind formale Sprachen und welche Operationen gibt es auf diese?
 - \rightarrow Aufgaben: B1V1, (B1T1), (B2H1), (B2H2), (B2H3)

2 Reguläre Sprachen

2.1 Deterministische endliche Automaten (DFAs)

(s. Überblicksfolien 02)

- Wie sind DFAs definiert und wie stellt man sie graphisch dar?
 - \rightarrow Aufgaben: B1T2, B1T3.1, (B3H1)
- Wie sind reguläre Sprachen definiert?

2.2 Nichtdeterministische endliche Automaten (NFAs)

(s. Überblicksfolien 03)

- Wie sind NFAs definiert und wie stellt man sie graphisch dar?
- Wieso kann man DFAs als Spezialfall von NFAs betrachten, obwohl formal kein DFA ein NFA sein kann?
 - \rightarrow Aufgaben: B1V2, B1TA3.2

2.3 Äquivalenz von NFAs und DFAs

(s. Überblicksfolien 07)

- Wie kann man aus jedem NFA einen DFA konstruieren, der dieselbe Sprache akzeptiert? (Potenzmengenverfahren)
 - → Aufgaben: B2T2.3, B3H2, B4H2.1, M09A2, W10A2, S12A2.1

2.4 NFAs mit ϵ -Übergängen (ϵ -NFAs)

(s. Überblicksfolien 03 und 06)

- Wie sind ϵ -NFAs definiert und wie stellt man sie graphisch dar?
 - \rightarrow Aufgaben: (B3H4)
- Wieso kann man NFAs als Spezialfall von ϵ -NFAs betrachten, obwohl formal kein NFA ein ϵ -NFA sein kann?
- Wie kann man aus jedem ϵ -NFA einen NFA konstruieren, der dieselbe Sprache akzeptiert? (Sättigungsalgorithmus)
 - \rightarrow Aufgaben: B2T2.2

2.5 Reguläre Ausdrücke (REs)

(s. Überblicksfolien 04 und 05)

- Wie sind REs definiert?
 - \rightarrow Aufgaben: B2V1, M10A4.2, S12A3.1, M11A2.1, M11A2.2
- Wann sind zwei REs äquivalent?
 - \rightarrow Aufgaben: (B2T1), (W10A4.1)
- Wie kann man aus jedem RE einen ϵ -NFAs konstruieren, der dieselbe Sprache akzeptiert? (Satz von Kleene)
 - \rightarrow Aufgaben: B2T2.1, W11A2.1
- Wieso ist jede endliche Sprache regulär?

2.6 Abschlusseigenschaften regulärer Sprachen

- Unter welchen Operationen sind reguläre Sprachen abgeschlossen?
- Seien L, L_1, L_2 reguläre Sprachen. Wie zeigt man, dass die Sprachen $L_1L_2, L_1 \cup L_2, L^*, \overline{L}, L_1 \cap L_2, L_1 \setminus L_2$ und L^R auch regulär sind?
 - \rightarrow Aufgaben: M09A3.1, B4H2.1
- Wie kann man diese Eigenschaften benutzen um die Regularität/Nichtregularität einer Sprache zu zeigen?
 - \rightarrow Aufgaben: M09A5.2
- Wie kann man die Regularität einer komplexeren Sprache zeigen?
 - → Aufgaben: B2T3, B4H3, B4H4, B5H1, M10A3, M09A4, M08A4, W11A3, W10A4.2, M11A2.3

2.7 Rechnen mit regulären Ausdrücken

• Welche Rechenregeln gibt es für REs?

2.8 Pumping Lemma für reguläre Sprachen

(s. Überblicksfolien 08)

- Wieso gilt das (reguläre) Pumping Lemma für alle reguläre Sprachen?
 - \rightarrow Aufgaben: B3H3
- Wie kann man es benutzen, um zu beweisen, dass eine Sprache nicht regulär ist?
 - \rightarrow Aufgaben: B3T1, B5H2, B6H1, W10A3.1, W11A2.3
- Kann man mit dem Pumping Lemma beweisen, dass eine Sprache doch regulär ist?
 - \rightarrow Aufgaben: M09A5.1

2.9 Entscheidbarkeit

- Welche Probleme für reguläre Sprachen sind entscheidbar?
 - \rightarrow Aufgaben: B7H1
- In welcher Laufzeit?

2.10 Äquivalenz regulärer Ausdrücke

• Was darf man machen, um Beweise über die Äquivalenz von regulären Ausdrücken zu vereinfachen?

2.11 Automaten und Gleichungssysteme

(s. Überblicksfolien 09)

- Was besagt das Ardens Lemma und welche Bedingungen müssen erfüllt sein?
 - \rightarrow Aufgaben: (B3T2)
- Wie kann man aus jedem NFA (oder DFA) einen RE konstruieren, der dieselbe Sprache akzeptiert? (Gleichungssysteme + Ardens Lemma)
 - \rightarrow Aufgaben: B3T3, B5H3, M08A5, M11A3

2.12 Minimierung endlicher Automaten

(s. Überblicksfolien 10)

- Wie ist Äquivalenz von Zuständen definiert, was ist der Quotientenautomat zu einem DFA und wie kann man ihn konstruieren?
 - $\rightarrow \text{Aufgaben: B4V1, B4T2, (B5H4), B6H3, M10A2, M09A3.2, M08A3, S12A2.2, M11A4.1}$
- Wie ist die Äquivalenz auf Wörtern definiert, was ist der kanonische Minimalautomat zu einer Sprache und wie kann man ihn konstruieren?
 - \rightarrow Aufgaben: B4T1, M11A4.2
- Wie kann man mit ihm die Regularität/Nichtregularität einer Sprache beweisen? (Satz von Myhill-Nerode)
 - \rightarrow Aufgaben: (M09A5.2)

3 Kontextfreie Sprachen

3.1 Kontextfreie Grammatiken (CFGs)

(s Überblicksfolien 11)

- Wie sind CFGs definiert und wie können sie dargestellt werden?
- \rightarrow Aufgaben: B4T3, W10A3.2, W11A4
- Wie sind Kontextfreie Sprachen (CFLs) definiert?
- Was sind links- und rechts-lineare CFGs?
 - \rightarrow Aufgaben: B6H4, W11A2.2
- Was ist ein (unendlicher) Ableitungsbaum (\neq Syntaxbaum)?

3.2 Induktive Definitionen, Syntaxbäume und Ableitungen

• Sei P(w) ein einstelliges Prädikat, also eine Eigenschaft von $w \in \Sigma^*$. Wie beweist man $w \in L(S) \Rightarrow P(w)$ (Induktion über die Erzeugung von w) und $w \in L(S) \Leftarrow P(w)$ (meistens mit vollständiger Induktion über |w|)?

Aufgaben: B5T1, B5T3, B6H2, B7H2, B8H2.2, M08A2, M09A6.1, M09A6.2, M10A5.2, W10A3.3, M11A5.1, W11A4.2

Was ist ein Syntaxbaum und wann ist eine CFG mehrdeutig bzw. eine CFL inhärent mehrdeutig?
 → Aufgaben: (B5T2), B7H3, S124.1, S12A4.1

3.3 Die Chomsky-Normalform (CNF)

(s. Überblicksfolien 14)

- Wann ist eine CFG in CNF?
- Wie kann man aus einer beliebigen CFG eine äquivalente CFG in CNF konstruieren?

 → Aufgaben: (B6H5), S12A4.2, M09A6.3

3.4 Das Pumping-Lemma für kontextfreie Sprachen

(s. Überblicksfolien 12)

- Wieso gilt das (kontextfreie) Pumping Lemma für alle kontextfreie Sprachen?
- Wie kann man es benutzen, um zu beweisen, dass eine Sprache nicht kontextfrei ist?
 → Aufgaben: B6T1.1, (B7H4), B8H1, M11A5.2, S12A3.2
- Kann man mit dem Pumping Lemma beweisen, dass eine Sprache doch kontextfrei ist?

3.5 Abschlusseigenschaften kontextfreier Sprachen

- Unter welchen Operationen sind kontextfreie Sprachen abgeschlossen?
- Seien L, L_1, L_2 kontextfreie Sprachen. Wie zeigt man, dass die Sprachen $L_1L_2, L_1 \cup L_2, L^*$ und L^R auch kontextfrei sind? (Achtung: $L_1 \cap L_2$ ist nicht notwendigerweise kontextfrei!) \rightarrow Aufgaben: B10H1.1
- Wie kann man diese Eigenschaften benutzen um die Kontextfreiheit/Nichtkontextfreiheit einer Sprache zu zeigen? (Analog zu den regulären Sprachen)

3.6 Algorithmen für kontextfreie Grammatiken

- Was sind nützliche, erzeugende und erreichbare Symbole und wie kann man eine Grammatik kontruieren, die nur nützlichen Symbole enthält?
 - \rightarrow Aufgaben: B6H6

3.7 Der Cocke-Younger-Kasami-Algorithmus (CYK)

(s. Überblicksfolien 13)

- Wie (und wieso?) funktioniert der CYK-Algorithmus und was kann man ihm machen?
 - \rightarrow Aufgaben: B6T2, B8H2.1, M10A5.1, S12A4.2, W11A4.3

3.8 Kellerautomaten (PDAs)

(s. Überblicksfolien 15)

- Wie sind PDAs definiert, wie stellt man sie graphisch dar und was ist eine Konfiguration eines PDAs?
 - \rightarrow Aufgaben: B6T3, (B8H3), E09A2, (E08A2)
- Wie kann man aus jeder CFG einen PDA konstruieren, der dieselbe Sprache akzeptiert?

3.9 Tabellarischer Überblick

• Das kommt direkt in die Formelsammlung! ;-) (Achtung: DCFLs und DPDAS sind deterministische CFGs bzw. PDAs und wurden nicht in der Vorlesung behandelt)

3.10 Die Chomsky-Hierarchie

 Welche sind die Typ-3-, Typ-2- und Typ-0-Sprachen und wieso gilt Typ 3 ⊂ Typ 2 ⊂ Typ 0? (Typ-1-Sprachen wurden zwar in der Vorlesung definiert, aber sie wurden kaum geübt)
 → Aufgaben: (B10H1.2)

4 Berechenbarkeit und Entscheidbarkeit

4.1 Der Begriff der Berechenbarkeit

• Wann ist eine Funktion intuitiv berechenbar und was heißt das für uns? (Church-Turing These)

4.2 Turingmaschinen (TMs)

(s. Überblicksfolien 16)

- Wie sind TMs definiert, wie stellt man sie graphisch dar und was ist eine Konfiguration einer TM?
 - → Aufgaben: B7V2, B7T1, B8H4, B9H2, (B9H4), E11A6, (E10A5), W11A7, W10A7, S12A5
- Was ist der Unterschied zwischen einer deterministischen und einer nichtdeterministischen TM?
- Wann ist eine Funktion Turing-berechenbar?
- Welche Sprachen werden von TMs akzeptiert?

4.3 Programmieren von kBand-TMs

- Wie funktionieren k-Band-TMs?
- Welche Übersetzungen kennen wir zwischen k-Band- und normale TMs?
 - \rightarrow Aufgaben: (B8T1)

4.4 LOOP-, WHILE- und GOTO-Berechenbarkeit

(s. Überblicksfolien 17)

- Wie sind LOOP-Programme definiert und wann ist eine Funktion LOOP-berechenbar?
 → Aufgaben: (B7T2), B8T3.1, B9H3
- Welche syntaktische Abkürzungen könnte man als LOOP-berechenbar annehmen?
- Wie sind WHILE-Programme definiert und wann ist eine Funktion WHILE-berechenbar?
 → Aufgaben: B10H4.3
- Wie sind GOTO-Programme definiert und wann ist eine Funktion GOTO-berechenbar?
- Welche Übersetzungen kennen wir zwischen k-Band-TMs, GOTO-, WHILE- und LOOP-Programmen?

4.5 Primitiv rekursive Funktionen (PR Funktionen)

(s. Überblicksfolien 18)

- Wie sind PR Funktionen definiert und was versteht man unter der erweiterten Komposition und dem erweiterten Schema der primitiven Rekursion?
 → Aufgaben: B8V1, B8T2, B9T1.1, (B10H2), B10H3, B11H2, (B13Z1), E11A2, E10A2, E09A4, E08A4, W11A5, W10A5, S12A7
- Welche Funktionen und welche syntaktische Abkürzungen könnte man als PR-berechenbar annehmen?
- Wann ist ein Prädikat P(x) PR?

4.6 PR = LOOP

- Wie ist die Cantorsche Paarungsfunktion c und die Umkehrfunktionen p_1 und p_2 definiert und wie kann man damit Zahlenpaare kodieren?
 - \rightarrow Aufgaben: B8T3.2
- Wie kann man mit $\langle \rangle$ und $d_0, d_1, \dots d_k$ beliebige Tupeln kodieren? \rightarrow Aufgaben: B10H4.1
- Welche Übersetzungen kennen wir zwischen PR und LOOP?

4.7 Die μ -rekursiven Funktionen (μ R)

- Wie sind μ R Funktionen definiert?
 - \rightarrow Aufgaben: B9T1.2
- Welche Übersetzungen kennen wir zwischen μ R und WHILE?

4.8 Die Ackermann-Funktion

- Wie ist die Ackermann-Funktion definiert?
 - \rightarrow Aufgaben: B9V1
- Welche Eigenschaften besitzt sie?
 - \rightarrow Aufgaben: (B11H4)

4.9 Entscheidbarkeit und das Halteproblem

- Wann ist eine Menge/Sprache bzw. ein Prädikat entscheidbar/unentscheidbar?
 → Aufgaben: B3H5, B10H4.2, B12H4.3, B13H2.1, (B13H2.2), E10A3.1, ET11A3.2, E09A3.3, E11A3.2
- Was bedeutet M_w bzw. φ_w und was ist die Gödelisierung eines Objekts? \rightarrow Aufgaben: B10V1, B10T1
- Was ist eine Universelle TM?
- Was bedeutet $M_w[x]\downarrow$, wie sind die Halteprobleme K, H und H_0 definiert und welche Eigenschaften besitzen sie?
- Wann ist eine Menge/Sprache auf eine andere reduzierbar und was bedeutet dies für die Entscheidbarkeit der beiden?
 - \rightarrow Aufgaben: B9T2, B12H2, B12H4.2, E08A5.3, E09A3.2

4.10 Semi-Entscheidbarkeit

- Wann ist eine Sprache bzw. ein Prädikat semi-entscheidbar?
 - \rightarrow Aufgaben: E08A5.1, E11A3.3
- Wann ist eine Sprache bzw. ein Prädikat rekursiv aufzählbar?
 - \rightarrow Aufgaben: B9T3, B11H3
- Was ist zur semi-entscheidbarkeit äquivalent?
- Welche Sprachen sind semi-entscheidbar? Welche nicht?

4.11 Die Sätze von Rice und Shapiro

- Was besagt der Satz von Rice und was kann man damit zeigen?
 → Aufgaben: B10T2, B12H4.1, E08A5.2, E09A3.1, E10A3.2, E11A3.1, W11A6
- Was besagt der Satz von Rice-Shapiro und was kann man damit zeigen?

4.12 Das Postsche Korrespondenzproblem (PCP)

• Wie ist das PCP definiert und welche Eigenschaften hat es?

→ Aufgaben: (B10T3), B11T1, B12H5, E10A4, E11A5

4.13 Unentscheidbare CFG-Probleme

• Welche Probleme für CFGs sind unentscheidbar?

5 Komplexitätstheorie

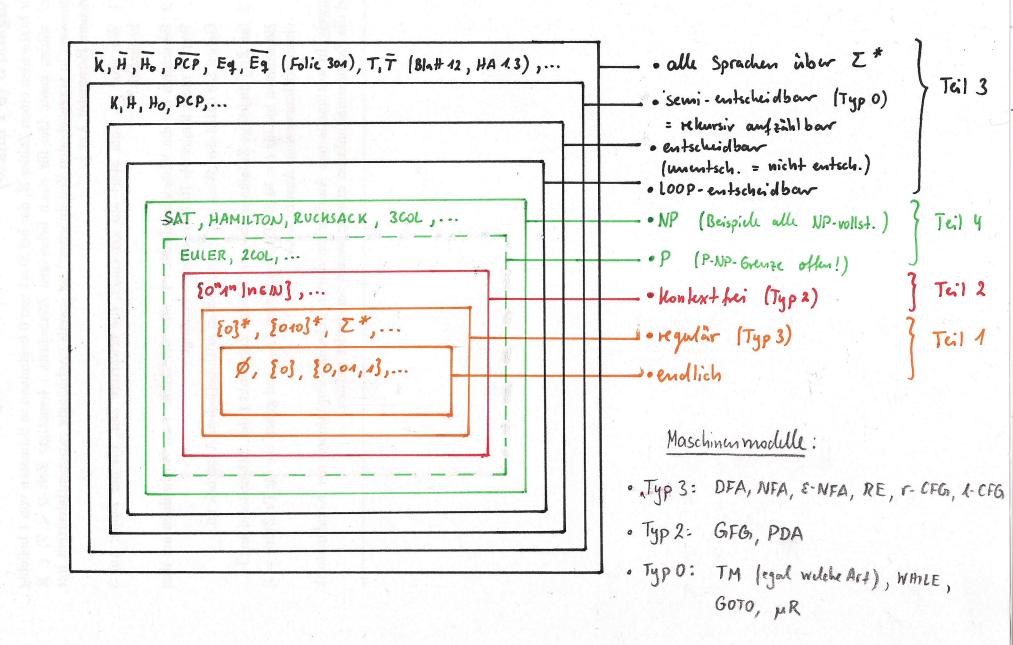
5.1 Die Komplexitätsklasse \mathcal{P}

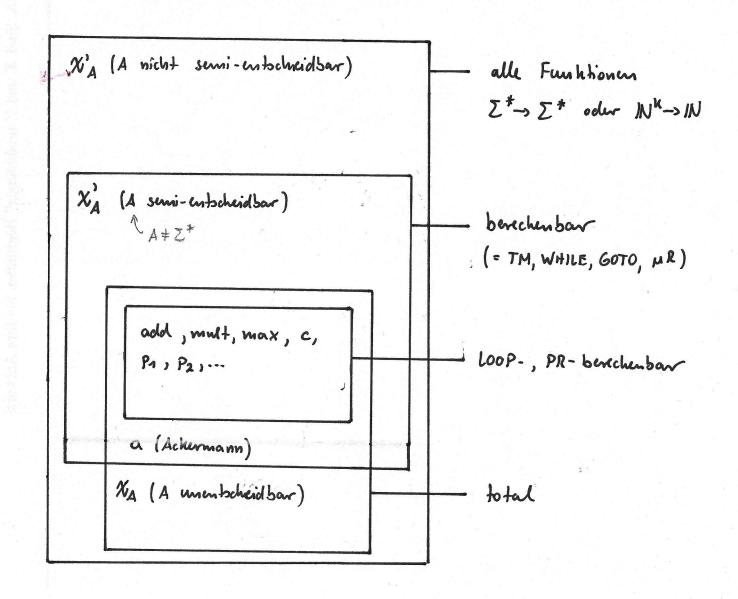
- Wie sind $time_M$, TIME(f(n)) und \mathcal{P} definiert?
- Wie zeigt man, dass eine Sprache L in \mathcal{P} liegt? \rightarrow Aufgaben: B12V2
- Wie sind folgende Probleme aus \mathcal{P} definiert?
 - Euler
 - 2Col

5.2 Die Komplexitätsklasse \mathcal{NP}

- Wie sind $ntime_M$, NTIME(f(n)) und \mathcal{NP} definiert?
- Wieso ist \mathcal{P} eine Teilklasse von \mathcal{NP} ?
- Welche äquivalente Beschreibung von \mathcal{NP} gibt es? (Zertifikat + Verifikator)
- Wie kann man zeigen, dass eine Sprache L in \mathcal{NP} liegt?
 - \rightarrow Aufgaben: B12T1
- Was heißt LOOP-entscheidbar?

5.3 NP-Vollständigkeit


- Wie ist die polynomielle Reduzierbarkeit definiert?
 - \rightarrow Aufgaben: B11V1
- Wann ist ein Problem \mathcal{NP} -hart und wann \mathcal{NP} -vollständig?
- Wie zeigt man, dass ein Problem \mathcal{NP} -hart oder sogar \mathcal{NP} -vollständig ist? \rightarrow Aufgaben: B12.T2, B13H5, B13H6, B13H7, B13H8, B13Z2, E08A3, E09A5, E10A6, E11A4, W11A8, S12A6
- Was besagt der Satz von Cook und warum ist er so wichtig für die Klasse der NP-vollständigen Probleme?
- Wie sind die \mathcal{NP} -vollständige Probleme SAT und 3Col definiert?


5.4 Weitere \mathcal{NP} -vollständige Probleme

- Wie sind folgende \mathcal{NP} -vollständige Probleme definiert?
 - Knf-Sat
 - 3Knf-Sat
 - Hamilton
 - Rucksack
 - FÄRBBARKEIT
 - Mengenüberdeckung
 - Clique
 - Partition
 - Bin Packing
 - Travelling Salesman

5.5 Die Unvollständigkeit der Arithmetik

• Was hat Gödel gemacht außer Sachen zu gödelisieren?

